SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Timko Michael P.) "

Sökning: WFRF:(Timko Michael P.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bellis, Emily S, et al. (författare)
  • Genomics of sorghum local adaptation to a parasitic plant
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:8, s. 4243-4251
  • Tidskriftsartikel (refereegranskat)abstract
    • Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.
  •  
2.
  • Aronsson, Henrik, et al. (författare)
  • Characterisation of the assembly pathway of the pea NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR), with emphasis on the role of its substrate, Pchlide
  • 2001
  • Ingår i: Physiologia Plantarum. - Hoboken, NJ : Wiley-Blackwell Publishing Inc.. - 0031-9317 .- 1399-3054. ; 111:2, s. 239-244
  • Tidskriftsartikel (refereegranskat)abstract
    • The homologous import and membrane association of a key enzyme for chlorophyll biosynthesis, the NADPH:protochlorophyllide (Pchlide) oxidoreductase (PAR, EC 1.6.99.1) into pea chloroplasts was investigated in vitro. The co-factor, NADPH, decreased binding of the precursor protein (pPOR) to the envelope membranes in the presence of ATP. The decrease of the binding reaction with NADPH was not observed with the precursor of the small subunit of Rubisco (pSS). To investigate possible substrate-dependency for the import reaction, internal Pchlide concentrations in the plastids were raised by either an addition of ÎŽ-aminolevulinic acid to isolated plastids or etiolation of the seedlings prior to plastid isolation. Increased amounts of plastid-bound Pchlide gave no observable differences in POR import. The capacity of POR and 11 different POR mutants, carrying charged-to-alanine scanning substitutions, to form a catalytically active POR-Pchlide-NADPH complex and to associate with the thylakoid membranes in a protease-resistant way were tested. Wild-type POR, as well as the mutants with charge substitutions in the N-terminal region of the protein, exhibited higher catalytic activity than the POR mutants carrying substitutions in the C-terminal region. Formation of a catalytically active complex did not, however, increase the association efficiency onto the thylakoids. We can, therefore, postulate that the import of pea POR into pea chloroplasts was not substrate-dependent, nor did formation of catalytically active complexes stimulate or inhibit the membrane association reaction of POR.
  •  
3.
  • Engdahl, Sheila, et al. (författare)
  • Association of the NADPH : protochlorophyllide oxidoreductase (POR) with isolated etioplast inner membranes from wheat
  • 2001
  • Ingår i: The Plant Journal. - Oxford : Blackwell. - 0960-7412 .- 1365-313X. ; 27:4, s. 297-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane association of NADPH:protochlorophyllide oxidoreductase (POR, EC: 1.6.99.1) with isolated prolamellar bodies (PLBs) and prothylakoids (PTs) from wheat etioplasts was investigated. in vitro-expressed radiolabelled POR, with or without transit peptide, was used to characterize membrane association conditions. Proper association of POR with PLBs and PTs did not require the presequence, whereas NADPH and hydrolysable ATP were vital for the process. After treating the membranes with thermolysin, sodium hydroxide or carbonate, a firm attachment of the POR protein to the membrane was found. Although the PLBs and PTs differ significantly in their relative amount of POR in vivo, no major differences in POR association capacity could be observed between the two membrane systems when exogenous NADPH was added, Experiments run with only an endogenous NADPH source almost abolished association of POR with both PLBs and PTs. In addition, POR protein carrying a mutation in the putative nucleotide-binding site (ALA06) was unable to bind to the inner membranes in the presence of NADPH, which further demonstrates that the co-factor is essential for proper membrane association. POR protein carrying a mutation in the substrate-binding site (ALA24) showed less binding to the membranes as compared to the wild type. The results presented here introduce studies of a novel area of protein-membrane interaction, namely the association of proteins with a paracrystalline membrane structure, the PLB.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy