SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Timmons James A.) "

Sökning: WFRF:(Timmons James A.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Scheele, Camilla, et al. (författare)
  • Altered regulation of the PINK1 locus: a link between Type 2 diabetes and neurodegeneration?
  • 2007
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 21:13, s. 3653-3665
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in PINK1 cause the mitochondrial-related neurodegenerative disease Parkinson’s. Here we investigate whether obesity, type 2 diabetes, or inactivity alters transcription from the PINK1 locus. We utilized a cDNA-array and quantitative real-time PCR for gene expression analysis of muscle from healthy volunteers following physical inactivity, and muscle and adipose tissue from nonobese or obese subjects with normal glucose tolerance or type 2 diabetes. Functional studies of PINK1 were performed utilizing RNA interference in cell culture models. Following inactivity, the PINK1 locus had an opposing regulation pattern (PINK1 was down-regulated while natural antisense PINK1 was up-regulated). In type 2 diabetes skeletal muscle, all transcripts from the PINK1 locus were suppressed and gene expression correlated with diabetes status. RNA interference of PINK1 in human neuronal cell lines impaired basal glucose uptake. In adipose tissue, mitochondrial gene expression correlated with PINK1 expression although remained unaltered following siRNA knockdown of Pink1 in primary cultures of brown preadipocytes. In conclusion, regulation of the PINK1 locus, previously linked to neurodegenerative disease, is altered in obesity, type 2 diabetes and inactivity, while the combination of RNAi experiments and clinical data suggests a role for PINK1 in cell energetics rather than in mitochondrial biogenesis.
  •  
2.
  • Timmons, James A., et al. (författare)
  • Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans
  • 2010
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 108:6, s. 1487-1496
  • Tidskriftsartikel (refereegranskat)abstract
    • Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, Akerstrom T, MacDougald OA, Jansson E, Greenhaff PL, Tarnopolsky MA, van Loon LJ, Pedersen BK, Sundberg CJ, Wahlestedt C, Britton SL, Bouchard C. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol 108: 1487-1496, 2010. First published February 4, 2010; doi:10.1152/japplphysiol.01295.2009.-A low maximal oxygen consumption ((V) over dotO(2max)) is a strong risk factor for premature mortality. Supervised endurance exercise training increases (V) over dotO(2max) with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts (V) over dotO(2max) training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous (V) over dotO(2max) response. Two independent preintervention RNA expression data sets were generated (n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in (V) over dotO(2max) (""predictor"" genes). The HERITAGE Family Study (n = 473) was used for genotyping. We discovered a 29-RNA signature that predicted (V) over dotO(2max) training response on a continuous scale; these genes contained similar to 6 new single-nucleotide polymorphisms associated with gains in (V) over dotO(2max) in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., ""reciprocal"" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in (V) over dotO(2max), corresponding to similar to 50% of the estimated genetic variance for (V) over dotO(2max). In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. (V) over dotO(2max) responses to endurance training can be predicted by measuring a similar to 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans.
  •  
3.
  • Dinas, Petros C, et al. (författare)
  • Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: A systematic review.
  • 2017
  • Ingår i: F1000Research. - : F1000 Research Ltd. - 2046-1402. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Exercise may activate a brown adipose-like phenotype in white adipose tissue. The aim of this systematic review was to identify the effects of physical activity on the link between peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a) and fibronectin type III domain-containing protein 5 (FNDC5) in muscle, circulating Irisin and uncoupling protein one (UCP1) of white adipocytes in humans. Methods: Two databases (PubMed 1966 to 08/2016 and EMBASE 1974 to 08/2016) were searched using an appropriate algorithm. We included articles that examined physical activity and/or exercise in humans that met the following criteria: a) PGC-1a in conjunction with FNDC5 measurements, and b) FNDC5 and/or circulating Irisin and/or UCP1 levels in white adipocytes. Results: We included 51 studies (12 randomised controlled trials) with 2474 participants. Out of the 51 studies, 16 examined PGC-1a and FNDC5 in response to exercise, and only four found increases in both PGC-1a and FNDC5 mRNA and one showed increased FNDC5 mRNA. In total, 22 out of 45 studies that examined circulating Irisin in response to exercise showed increased concentrations when ELISA techniques were used; two studies also revealed increased Irisin levels measured via mass spectrometry. Three studies showed a positive association of circulating Irisin with physical activity levels. One study found no exercise effects on UCP1 mRNA in white adipocytes. Conclusions: The effects of physical activity on the link between PGC-1a, FNDC5 mRNA in muscle and UCP1 in white human adipocytes has attracted little scientific attention. Current methods for Irisin identification lack precision and, therefore, the existing evidence does not allow for conclusions to be made regarding Irisin responses to physical activity. We found a contrast between standardised review methods and accuracy of the measurements used. This should be considered in future systematic reviews.
  •  
4.
  • Fredriksson, Katarina, et al. (författare)
  • Dysregulation of Mitochondrial Dynamics and the Muscle Transcriptome in ICU Patients Suffering from Sepsis Induced Multiple Organ Failure
  • 2008
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 3:11, s. e3686-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Septic patients treated in the intensive care unit (ICU) often develop multiple organ failure including persistent skeletal muscle dysfunction which results in the patient's protracted recovery process. We have demonstrated that muscle mitochondrial enzyme activities are impaired in septic ICU patients impairing cellular energy balance, which will interfere with muscle function and metabolism. Here we use detailed phenotyping and genomics to elucidate mechanisms leading to these impairments and the molecular consequences. Methodology/Principal Findings: Utilising biopsy material from seventeen patients and ten age-matched controls we demonstrate that neither mitochondrial in vivo protein synthesis nor expression of mitochondrial genes are compromised. Indeed, there was partial activation of the mitochondrial biogenesis pathway involving NRF2a/GABP and its target genes TFAM, TFB1M and TFB2M yet clearly this failed to maintain mitochondrial function. We therefore utilised transcript profiling and pathway analysis of ICU patient skeletal muscle to generate insight into the molecular defects driving loss of muscle function and metabolic homeostasis. Gene ontology analysis of Affymetrix analysis demonstrated substantial loss of muscle specific genes, a global oxidative stress response related to most probably cytokine signalling, altered insulin related signalling and a substantial overlap between patients and muscle wasting/inflammatory animal models. MicroRNA 21 processing appeared defective suggesting that post-transcriptional protein synthesis regulation is altered by disruption of tissue microRNA expression. Finally, we were able to demonstrate that the phenotype of skeletal muscle in ICU patients is not merely one of inactivity, it appears to be an actively remodelling tissue, influenced by several mediators, all of which may be open to manipulation with the aim to improve clinical outcome. Conclusions/Significance: This first combined protein and transcriptome based analysis of human skeletal muscle obtained from septic patients demonstrated that losses of mitochondria and muscle mass are accompanied by sustained protein synthesis (anabolic process) while dysregulation of transcription programmes appears to fail to compensate for increased damage and proteolysis. Our analysis identified both validated and novel clinically tractable targets to manipulate these failing processes and pursuit of these could lead to new potential treatments.
  •  
5.
  • Gburcik, Valentina, et al. (författare)
  • An essential role for Tbx15 in the differentiation of brown and "brite" but not white adipocytes
  • 2012
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 303:8, s. e1053-E1060
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor Tbx15 is expressed predominantly in brown adipose tissue and in those white adipose depots that are capable of giving rise to brown-in-white ("brite"/"beige") adipocytes. Therefore, we have investigated a possible role here of Tbx15 in brown and brite adipocyte differentiation in vitro. Adipocyte precursors were isolated from interscapular and axilliary brown adipose tissues, inguinal white ("brite") adipose tissue, and epididymal white adipose tissue in 129/Sv mouse pups and differentiated in culture. Differentiation was enhanced by chronic treatment with the PPAR gamma agonist rosiglitazone plus the sympathetic neurotransmitter norepinephrine. Using short interfering RNAs (siRNA) directed toward Tbx15 in these primary adipocyte cultures, we decreased Tbx15 expression >90%. This resulted in reduced expression levels of adipogenesis markers (PPAR gamma, aP2). Importantly, Tbx15 knockdown reduced the expression of brown phenotypic marker genes (PRDM16, PGC-1 alpha, Cox8b/Cox4, UCP1) in brown adipocytes and even more markedly in inguinal white adipocytes. In contrast, Tbx15 knockdown had no effect on white adipocytes originating from a depot that is not brite competent in vivo (epididymal). Therefore, Tbx15 may be essential for the development of the adipogenic and thermogenic programs in adipocytes/adipomyocytes capable of developing brown adipocyte features.
  •  
6.
  • Keller, Pernille, et al. (författare)
  • Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity
  • 2011
  • Ingår i: BMC Endocrine Disorders. - : Springer Science and Business Media LLC. - 1472-6823. ; 11, s. 7-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Adipose tissue abundance relies partly on the factors that regulate adipogenesis, i.e. proliferation and differentiation of adipocytes. While components of the transcriptional program that initiates adipogenesis is well-known, the importance of microRNAs in adipogenesis is less well studied. We thus set out to investigate whether miRNAs would be actively modulated during adipogenesis and obesity.METHODS: Several models exist to study adipogenesis in vitro, of which the cell line 3T3-L1 is the most well known, albeit not the most physiologically appropriate. Thus, as an alternative, we produced EXIQON microarray of brown and white primary murine adipocytes (prior to and following differentiation) to yield global profiles of miRNAs.RESULTS: We found 65 miRNAs regulated during in vitro adipogenesis in primary adipocytes. We evaluated the similarity of our responses to those found in non-primary cell models, through literature data-mining. When comparing primary adipocyte profiles, with those of cell lines reported in the literature, we found a high degree of difference in 'adipogenesis' regulated miRNAs suggesting that the model systems may not be accurately representing adipogenesis. The expression of 10 adipogenesis-regulated miRNAs were studied using real-time qPCR and then we selected 5 miRNAs, that showed robust expression, were profiled in subcutaneous adipose tissue obtained from 20 humans with a range of body mass indices (BMI, range = 21-48, and all samples have U133+2 Affymetrix profiles provided). Of the miRNAs tested, mir-21 was robustly expressed in human adipose tissue and positively correlated with BMI (R2 = 0.49, p < 0.001).CONCLUSION: In conclusion, we provide a preliminary analysis of miRNAs associated with primary cell in vitro adipogenesis and demonstrate that the inflammation-associated miRNA, mir-21 is up-regulated in subcutaneous adipose tissue in human obesity. Further, we provide a novel transcriptomics database of EXIQON and Affymetrix adipocyte profiles to facilitate data mining.
  •  
7.
  • Petrovic, Natasa, et al. (författare)
  • Chronic Perixosome Proliferator-activated Receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classical brown adipocytes.
  • 2010
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 285:10, s. 7153-7164
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent insight that brown adipocytes and muscle cells share a common origin and in this respect are distinct from white adipocytes has spurred questions concerning the origin and molecular characteristics of the UCP1-expressing cells observed in classical white adipose tissue depots under certain physiological or pharmacological conditions. Examining precursors from the purest white adipose tissue depot (epididymal), we report here that chronic treatment with the PPARgamma agonist rosiglitazone promotes not only the expression of PGC-1alpha and mitochondriogenesis in these cells but also a norepinephrine-augmentable UCP1 gene expression in a significant subset of the cells, providing these cells with a genuine thermogenic capacity. However, although functional thermogenic genes are expressed, the cells are devoid of transcripts for the novel transcription factors now associated with classical brown adipocytes (Zic1, Lhx8, Meox2 and characteristically PRDM16) or for myocyte-associated genes (myogenin and myomirs (muscle-specific microRNAs)) and retain white-fat characteristics such as Hoxc9 expression. Co-culture experiments verify that the UCP1-expressing cells are not proliferating classical brown adipocytes (adipomyocytes) and these cells therefore constitute a subset of adipocytes (''brite'' adipocytes) with a developmental origin and molecular characteristics distinguishing them as a separate class of cells.
  •  
8.
  •  
9.
  • Scheele, Camilla, et al. (författare)
  • USING FUNCTIONAL GENOMICS TO STUDY PINK1 AND METABOLIC PHYSIOLOGY :
  • 2009
  • Ingår i: Methods in Enzymology. - 0076-6879 .- 1557-7988. ; 457, s. 211-229
  • Forskningsöversikt (refereegranskat)abstract
    • Genome sequencing projects have provided the substrate for an unimaginable number of biological experiments. Further, genomic technologies such as microarrays and quantitative and exquisitely sensitive techniques such as real-time quantitative polymerase chain reaction have made it possible to reliably generate millions of data points per experiment. The data can be high quality and yield entirely new insights into how gene expression is coordinated under complex physiological situations. It can also be that the data and interpretation are meaningless because of a lack of physiological context or experimental control. Thus, functional genomics is now being applied to study metabolic physiology with varying degrees of success. From the genome sequencing projects we also have the information needed to design chemical tools that can knock down a gene transcript, even distinguishing between splice variants in mammalian cells. Use of such technologies, inspired by nature's endogenous RNAi mechanism-microRNA targeting, comes with significant caveats. While the discipline of Pharmacology taught us last century that inhibitor action specificity is dependent on the concentration used, these experiences have been ignored by users of siRNA technologies. What we provide in this chapter is some considerations and observations from functional genomic studies. We are largely concerned with the phase that follows a microarray study, where a candidate gene is selected for manipulation in a system that is considered to be simpler than the in vivo mammalian tissue and thus the methods discussed largely apply to this cell biology phase. We apologize for not referring to all relevant publications and for any technical considerations we have also failed to factor into our discussion.
  •  
10.
  • Sood, Sanjana, et al. (författare)
  • A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status
  • 2015
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Diagnostics of the human ageing process may help predict future healthcare needs or guide preventative measures for tackling diseases of older age. We take a transcriptomics approach to build the first reproducible multi-tissue RNA expression signature by gene-chip profiling tissue from sedentary normal subjects who reached 65 years of age in good health. Results: One hundred and fifty probe-sets form an accurate classifier of young versus older muscle tissue and this healthy ageing RNA classifier performed consistently in independent cohorts of human muscle, skin and brain tissue (n = 594, AUC = 0.83-0.96) and thus represents a biomarker for biological age. Using the Uppsala Longitudinal Study of Adult Men birth-cohort (n = 108) we demonstrate that the RNA classifier is insensitive to confounding lifestyle biomarkers, while greater gene score at age 70 years is independently associated with better renal function at age 82 years and longevity. The gene score is 'up-regulated' in healthy human hippocampus with age, and when applied to blood RNA profiles from two large independent age-matched dementia case-control data sets (n = 717) the healthy controls have significantly greater gene scores than those with cognitive impairment. Alone, or when combined with our previously described prototype Alzheimer disease (AD) RNA 'disease signature', the healthy ageing RNA classifier is diagnostic for AD. Conclusions: We identify a novel and statistically robust multi-tissue RNA signature of human healthy ageing that can act as a diagnostic of future health, using only a peripheral blood sample. This RNA signature has great potential to assist research aimed at finding treatments for and/or management of AD and other ageing-related conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (13)
forskningsöversikt (2)
annan publikation (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Timmons, James A (16)
Cannon, Barbara (9)
Nedergaard, Jan (8)
Petrovic, Natasa (6)
Scheele, Camilla (5)
Wahlestedt, Claes (4)
visa fler...
Keller, Pernille (4)
Larsson, Ola (3)
Jansson, Eva (2)
Shabalina, Irina G. (2)
Sundberg, Carl Johan (2)
Rooyackers, Olav (2)
Gallagher, Iain J. (2)
Jensen, Thomas (2)
Fredriksson, Katarin ... (2)
van Loon, Luc J. C. (2)
Greenhaff, Paul L (2)
Gburcik, Valentina (2)
Hansen, Ida R. (2)
Lannfelt, Lars (1)
Cederholm, Tommy (1)
Nielsen, Soren (1)
Svensson, Per-Arne, ... (1)
Norrbom, Jessica (1)
Kraus, William E. (1)
Gustafsson, Thomas (1)
Tesch, Per A (1)
Tesch, Per (1)
Flouris, Andreas D. (1)
Rullman, Eric (1)
Wernerman, Jan (1)
Hamilton, D. Lee (1)
Phillips, Bethan E. (1)
Atherton, Philip J. (1)
Bouchard, Claude (1)
Hutchinson, Dana S. (1)
Rankinen, Tuomo (1)
Dinas, Petros C (1)
Lahart, Ian M (1)
Koutedakis, Yiannis (1)
Metsios, George S (1)
Thonberg, Håkan (1)
Lassmann, Timo (1)
Tjader, Inga (1)
Ahlman, Bo (1)
Cawthorn, William P. (1)
Macdougald, Ormond A (1)
Crossland, Hannah (1)
Howard, Robert (1)
Lunnon, Katie (1)
visa färre...
Lärosäte
Stockholms universitet (13)
Karolinska Institutet (7)
Uppsala universitet (2)
Mittuniversitetet (2)
Göteborgs universitet (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy