SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tinguely M) "

Sökning: WFRF:(Tinguely M)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
5.
  •  
6.
  •  
7.
  • Schaumann, N., et al. (författare)
  • Lobular neoplasia and invasive lobular breast cancer: Inter-observer agreement for histological grading and subclassification
  • 2019
  • Ingår i: Pathology Research and Practice. - : Elsevier BV. - 0344-0338. ; 215:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Lobular neoplasia (LN), invasive lobular breast cancer (ILBC) and related pleomorphic variants represent a distinct group of neoplastic mammary gland lesions. This study assessed the inter-observer agreement of histological grading in a series of ILBC and LN. 54 cases (36x ILBC, 18x LN) were evaluated by 17 observers. 3978 classification calls on various histological features, including nuclear grade, proliferative activity (Ki67 immunohistochemistry, categorical scoring), histological grade and pleomorphism were obtained. Pairwise Cohen's kappa values were calculated and compared between various features and different observer subsets with variable histomorphological experience. In ILBC, pairwise inter-observer agreement for histological grade ranged from poor to almost perfect concordance and was higher in advanced and experienced histopathologists compared with beginners (P < 0.001). Agreement for proliferation (Ki67) ranged from slight to almost perfect concordance and was also higher in advanced and experienced histopathologists (P < 0.001). Considering different features, agreement for proliferation (Ki67) was superior to agreement for histological grade and nuclear grade, even among advanced and experienced histopathologists (P < 0.001). In LN, agreement for B-classification ranged from poor to almost perfect concordance and was higher in advanced and experienced histopathologists (P < 0.001). Considering different features, agreement for proliferation (Ki67 in LN) was superior to subclassification agreement based on conventional features, such as acinar distention and nuclear grade (P < 0.001). In summary, pairwise inter-observer concordance of histological grading of ILBC and LN is dependent on histomorphological experience. Assessment of proliferation by Ki67 immunohistochemistry is associated with favorable inter-observer agreement and can improve histological grading of ILBC as well as LN. © 2019 Elsevier GmbH
  •  
8.
  • Creely, A. J., et al. (författare)
  • Overview of the SPARC tokamak
  • 2020
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field (B-0 = 12.2 T), compact (R-0 = 1.85 m, a = 0.57 m), superconducting, D-T tokamak with the goal of producing fusion gain Q > 2 from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of Q > 2 is achievable with conservative physics assumptions (H-98,H- y2 = 0.7) and, with the nominal assumption of H-98,H- y2 = 1, SPARC is projected to attain Q approximate to 11 and P-fusion approximate to 140 MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density (< n(e)> approximate to 3 x 10(20) m(-3)), high temperature (< Te > approximate to 7 keV) and high power density (P-fusion/V-plasma approximate to 7 MWm(-3)) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy