SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tint Mya Thway) "

Sökning: WFRF:(Tint Mya Thway)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lyons-Reid, Jaz, et al. (författare)
  • Bioelectrical impedance analysis for assessment of body composition in infants and young children-A systematic literature review
  • 2021
  • Ingår i: Clinical Obesity. - : John Wiley & Sons. - 1758-8103 .- 1758-8111. ; 11:3
  • Forskningsöversikt (refereegranskat)abstract
    • Bioelectrical impedance analysis (BIA) is an easy to use, portable tool, but the accuracy of the technique in infants and young children (<24 months) remains unclear. A systematic literature review was conducted to identify studies that have developed and validated BIA equations in this age group. MEDLINE, Scopus, EMBASE, and CENTRAL were searched for relevant literature published up until June 30, 2020, using terms related to bioelectrical impedance, body composition, and paediatrics. Two reviewers independently screened studies for eligibility, resulting in 15 studies that had developed and/or validated equations. Forty-six equations were developed and 34 validations were conducted. Most equations were developed in young infants (<= 6 months), whereas only seven were developed among older infants and children (6-24 months). Most studies were identified as having a high risk of bias, and only a few included predominantly healthy children born at term. Using the best available evidence, BIA appears to predict body composition at least as well as other body composition tools; however, among younger infants BIA may provide little benefit over anthropometry-based prediction equations. Currently, none of the available equations can be recommended for use in research or in clinical practice.
  •  
2.
  • Lyons-Reid, Jaz, et al. (författare)
  • Prediction of fat-free mass in a multi-ethnic cohort of infants using bioelectrical impedance : Validation against the PEA POD
  • 2022
  • Ingår i: Frontiers in Nutrition. - : Frontiers Media S.A.. - 2296-861X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bioelectrical impedance analysis (BIA) is widely used to measure body composition but has not been adequately evaluated in infancy. Prior studies have largely been of poor quality, and few included healthy term-born offspring, so it is unclear if BIA can accurately predict body composition at this age.Aim: This study evaluated impedance technology to predict fat-free mass (FFM) among a large multi-ethnic cohort of infants from the United Kingdom, Singapore, and New Zealand at ages 6 weeks and 6 months (n = 292 and 212, respectively).Materials and methods: Using air displacement plethysmography (PEA POD) as the reference, two impedance approaches were evaluated: (1) empirical prediction equations; (2) Cole modeling and mixture theory prediction. Sex-specific equations were developed among similar to 70% of the cohort. Equations were validated in the remaining similar to 30% and in an independent University of Queensland cohort. Mixture theory estimates of FFM were validated using the entire cohort at both ages.Results: Sex-specific equations based on weight and length explained 75-81% of FFM variance at 6 weeks but only 48-57% at 6 months. At both ages, the margin of error for these equations was 5-6% of mean FFM, as assessed by the root mean squared errors (RMSE). The stepwise addition of clinically-relevant covariates (i.e., gestational age, birthweight SDS, subscapular skinfold thickness, abdominal circumference) improved model accuracy (i.e., lowered RMSE). However, improvements in model accuracy were not consistently observed when impedance parameters (as the impedance index) were incorporated instead of length. The bioimpedance equations had mean absolute percentage errors (MAPE) < 5% when validated. Limits of agreement analyses showed that biases were low (< 100 g) and limits of agreement were narrower for bioimpedance-based than anthropometry-based equations, with no clear benefit following the addition of clinically-relevant variables. Estimates of FFM from BIS mixture theory prediction were inaccurate (MAPE 11-12%).Conclusion: The addition of the impedance index improved the accuracy of empirical FFM predictions. However, improvements were modest, so the benefits of using bioimpedance in the field remain unclear and require further investigation. Mixture theory prediction of FFM from BIS is inaccurate in infancy and cannot be recommended.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy