SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tinz Birger) "

Sökning: WFRF:(Tinz Birger)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bröde, Peter, et al. (författare)
  • Deriving the operational procedure for the Universal Thermal Climate Index (UTCI)
  • 2012
  • Ingår i: International Journal of Biometeorology. - : Springer Science and Business Media LLC. - 1432-1254 .- 0020-7128. ; 56:3, s. 481-494
  • Tidskriftsartikel (refereegranskat)abstract
    • The Universal Thermal Climate Index (UTCI) aimed for a one-dimensional quantity adequately reflecting the human physiological reaction to the multi-dimensionally defined actual outdoor thermal environment. The human reaction was simulated by the UTCI-Fiala multi-node model of human thermoregulation, which was integrated with an adaptive clothing model. Following the concept of an equivalent temperature, UTCI for a given combination of wind speed, radiation, humidity and air temperature was defined as the air temperature of the reference environment, which according to the model produces an equivalent dynamic physiological response. Operationalising this concept involved (1) the definition of a reference environment with 50% relative humidity (but vapour pressure capped at 20 hPa), with calm air and radiant temperature equalling air temperature and (2) the development of a one-dimensional representation of the multivariate model output at different exposure times. The latter was achieved by principal component analyses showing that the linear combination of 7 parameters of thermophysiological strain (core, mean and facial skin temperatures, sweat production, skin wettedness, skin blood flow, shivering) after 30 and 120 min exposure time accounted for two-thirds of the total variation in the multi-dimensional dynamic physiological response. The operational procedure was completed by a scale categorising UTCI equivalent temperature values in terms of thermal stress, and by providing simplified routines for fast but sufficiently accurate calculation, which included look-up tables of pre-calculated UTCI values for a grid of all relevant combinations of climate parameters and polynomial regression equations predicting UTCI over the same grid. The analyses of the sensitivity of UTCI to humidity, radiation and wind speed showed plausible reactions in the heat as well as in the cold, and indicate that UTCI may in this regard be universally useable in the major areas of research and application in human biometeorology.
  •  
2.
  • May, Wilhelm, et al. (författare)
  • Projected change - Atmosphere
  • 2016
  • Ingår i: North Sea Region Climate Change Assessment. - Cham : Springer International Publishing. - 9783319397436 - 9783319397450 ; , s. 149-173
  • Bokkapitel (refereegranskat)abstract
    • Several aspects describing the state of the atmosphere in the North Sea region are considered in this chapter. These include large-scale circulation, means and extremes in temperature and precipitation, cyclones and winds, and radiation and clouds. The climate projections reveal several pronounced future changes in the state of the atmosphere in the North Sea region, both in the free atmosphere and near the surface: amplification and an eastward shift in the pattern of NAO variability in autumn and winter; changes in the storm track with increased cyclone density over western Europe in winter and reduced cyclone density on the southern flank in summer; more frequent strong winds from westerly directions and less frequent strong winds from south-easterly directions; marked mean warming of 1.7–3.2 °C for different scenarios, with stronger warming in winter than in summer and a relatively strong warming over southern Norway; more intense extremes in daily maximum temperature and reduced extremes in daily minimum temperature, both in strength and frequency; an increase n mean precipitation during the cold season and a reduction during the warm season; a ronounced increase in the intensity of heavy daily precipitation events, particularly in winter; a considerable increase in the intensity of extreme hourly precipitation in summer; an increase (decrease) in cloud cover in the northern (southern) part of the North Sea region, resulting in a decrease (increase) in net solar radiation at the surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy