SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tissot A.) "

Search: WFRF:(Tissot A.)

  • Result 1-10 of 47
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bellaver, B., et al. (author)
  • Blood-brain barrier integrity impacts the use of plasma amyloid-beta as a proxy of brain amyloid-beta pathology
  • 2023
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:9, s. 3815-3825
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION Amyloid-beta (A beta) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers.METHODS We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography A beta, p-tau, and albumin measures.RESULTS Plasma A beta(42/40) better identified CSF A beta(42/40) and A beta-PET positivity in individuals with high BBB permeability. An interaction between plasma A beta(42/40) and BBB permeability on CSF A beta(42/40) was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma A beta was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels.DISCUSSION These findings suggest that BBB integrity may influence the performance of plasma A beta, but not p-tau, biomarkers in research and clinical settings.
  •  
2.
  • Therriault, J., et al. (author)
  • Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer's disease
  • 2023
  • In: Alzheimers & Dementia. - 1552-5260. ; 19:11, s. 4967-4977
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed.METHODS: We assessed the diagnostic performance of p-tau(181), p-tau(217), and p-tau(231) in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity.RESULTS: Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau(181) (AUC = 76%) and p-tau(231) (AUC = 82%) assessments performed inferior to CSF p-tau(181) (AUC = 87%) and p-tau(231) (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau(217) (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity.DISCUSSION: Plasma and CSF p-tau(217) had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau(217) may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD.
  •  
3.
  • Woo, M. S., et al. (author)
  • 14-3-3 ζ/δ-reported early synaptic injury in Alzheimer's disease is independently mediated by sTREM2
  • 2023
  • In: Journal of Neuroinflammation. - 1742-2094. ; 20:1
  • Journal article (peer-reviewed)abstract
    • Introduction Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears.Methods We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta (zeta/delta) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages.Results14-3-3 zeta/delta was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 zeta/delta correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss.ConclusionsOur results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.
  •  
4.
  • Ferrari-Souza, J. P., et al. (author)
  • Astrocyte biomarker signatures of amyloid-beta and tau pathologies in Alzheimer's disease
  • 2022
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27:11, s. 4781-4789
  • Journal article (peer-reviewed)abstract
    • Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-beta (A beta) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for A beta ([F-18]AZD4694) and tau ([F-18]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated A beta-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not A beta-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of A beta and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain A beta and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.
  •  
5.
  • Ferreira, P. C. L., et al. (author)
  • Plasma p-tau231 and p-tau217 inform on tau tangles aggregation in cognitively impaired individuals
  • 2023
  • In: Alzheimers & Dementia. - 1552-5260. ; 19:10, s. 4463-4474
  • Journal article (peer-reviewed)abstract
    • INTRODUCTIONPhosphorylated tau (p-tau) biomarkers have been recently proposed to represent brain amyloid-& beta; (A & beta;) pathology. Here, we evaluated the plasma biomarkers' contribution beyond the information provided by demographics (age and sex) to identify A & beta; and tau pathologies in individuals segregated as cognitively unimpaired (CU) and impaired (CI). METHODSWe assessed 138 CU and 87 CI with available plasma p-tau231, 217(+), and 181, A & beta;42/40, GFAP and A & beta;- and tau-PET. RESULTSIn CU, only plasma p-tau231 and p-tau217(+) significantly improved the performance of the demographics in detecting A & beta;-PET positivity, while no plasma biomarker provided additional information to identify tau-PET positivity. In CI, p-tau217(+) and GFAP significantly contributed to demographics to identify both A & beta;-PET and tau-PET positivity, while p-tau231 only provided additional information to identify tau-PET positivity. DISCUSSIONOur results support plasma p-tau231 and p-tau217(+) as state markers of early A & beta; deposition, but in later disease stages they inform on tau tangle accumulation. HighlightsIt is still unclear how much plasma biomarkers contribute to identification of AD pathology across the AD spectrum beyond the information already provided by demographics (age + sex).Plasma p-tau231 and p-tau217(+) contribute to demographic information to identify brain A & beta; pathology in preclinical AD.In CI individuals, plasma p-tau231 contributes to age and sex to inform on the accumulation of tau tangles, while p-tau217(+) and GFAP inform on both A & beta; deposition and tau pathology.
  •  
6.
  • Leffa, D. T., et al. (author)
  • Genetic risk for attention-deficit/hyperactivity disorder predicts cognitive decline and development of Alzheimer's disease pathophysiology in cognitively unimpaired older adults
  • 2023
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 28:3, s. 1248-1255
  • Journal article (peer-reviewed)abstract
    • Attention-deficit/hyperactivity disorder (ADHD) persists in older age and is postulated as a risk factor for cognitive impairment and Alzheimer's Disease (AD). However, these findings rely primarily on electronic health records and can present biased estimates of disease prevalence. An obstacle to investigating age-related cognitive decline in ADHD is the absence of large-scale studies following patients with ADHD into older age. Alternatively, this study aimed to determine whether genetic liability for ADHD, as measured by a well-validated ADHD polygenic risk score (ADHD-PRS), is associated with cognitive decline and the development of AD pathophysiology in cognitively unimpaired (CU) older adults. We calculated a weighted ADHD-PRS in 212 CU individuals without a clinical diagnosis of ADHD (55-90 years). These individuals had baseline amyloid-beta (A beta) positron emission tomography, longitudinal cerebrospinal fluid (CSF) phosphorylated tau at threonine 181 (p-tau(181)), magnetic resonance imaging, and cognitive assessments for up to 6 years. Linear mixed-effects models were used to test the association of ADHD-PRS with cognition and AD biomarkers. Higher ADHD-PRS was associated with greater cognitive decline over 6 years. The combined effect between high ADHD-PRS and brain A beta deposition on cognitive deterioration was more significant than each individually. Additionally, higher ADHD-PRS was associated with increased CSF p-tau(181) levels and frontoparietal atrophy in CU A beta-positive individuals. Our results suggest that genetic liability for ADHD is associated with cognitive deterioration and the development of AD pathophysiology. Findings were mostly observed in A beta-positive individuals, suggesting that the genetic liability for ADHD increases susceptibility to the harmful effects of A beta pathology.
  •  
7.
  • Woo, M. S., et al. (author)
  • Plasma pTau-217 and N-terminal tau (NTA) enhance sensitivity to identify tau PET positivity in amyloid-β positive individuals
  • 2024
  • In: Alzheimers & Dementia. - 1552-5260. ; 20:2, s. 1166-1174
  • Journal article (peer-reviewed)abstract
    • INTRODUCTIONWe set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (A beta) positive participants using plasma biomarkers.METHODSIn this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18F]AZD4694 and tau-PET with [18F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in A beta+ individuals.RESULTSHighest associations with tau positivity in A beta+ individuals were found for plasma pTau-217 (AUC [CI95%] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95%] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95% = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity.DISCUSSIONThe potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice.HighlightsWe found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity.We found that in A beta+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity.Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.
  •  
8.
  • Ferrari-Souza, J. P., et al. (author)
  • APOEε4 potentiates amyloid β effects on longitudinal tau pathology
  • 2023
  • In: Nature Aging. - 2662-8465. ; 3:10
  • Journal article (peer-reviewed)abstract
    • The mechanisms by which the apolipoprotein E epsilon 4 (APOE epsilon 4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOE epsilon 4 carriership and amyloid-beta (A beta) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for A beta ([F-18]AZD4694) and tau ([F-18]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOE epsilon 4 carriership potentiates A beta effects on longitudinal tau accumulation over 2 years. The APOE epsilon 4-potentiated A beta effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217(+)) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOE epsilon 4 allele plays a key role in A beta downstream effects on the aggregation of phosphorylated tau in the living human brain.
  •  
9.
  • Le Pavec, J. M., et al. (author)
  • Lung transplantation for sarcoidosis: outcome and prognostic factors
  • 2021
  • In: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 58:2
  • Journal article (peer-reviewed)abstract
    • Study question In patients with sarcoidosis, past and ongoing immunosuppressive regimens, recurrent disease in the transplant and extrapulmonary involvement may affect outcomes of lung transplantation. We asked whether sarcoidosis lung phenotypes can be differentiated and, if so, how they relate to outcomes in patients with pulmonary sarcoidosis treated by lung transplantation. Patients and methods We retrospectively reviewed data from 112 patients who met international diagnostic criteria for sarcoidosis and underwent lung or heart-lung transplantation between 2006 and 2019 at 16 European centres. Results Patient survival was the main outcome measure. At transplantation, median (interaquartile range (IQR)) age was 52 (46-59) years; 71 (64%) were male. Lung phenotypes were individualised as follows: 1) extended fibrosis only; 2) airflow obstruction; 3) severe pulmonary hypertension (sPH) and airflow obstruction; 4) sPH, airflow obstruction and fibrosis; 5) sPH and fibrosis; 6) airflow obstruction and fibrosis; 7) sPH; and 8) none of these criteria, in 17%, 16%, 17%, 14%, 11%, 9%, 5% and 11% of patients, respectively. Post-transplant survival rates after 1, 3, and 5 years were 86%, 76% and 69%, respectively. During follow-up (median (IQR) 46 (16-89) months), 31% of patients developed chronic lung allograft dysfunction. Age and extended lung fibrosis were associated with increased mortality. Pulmonary fibrosis predominating peripherally was associated with short-term complications. Answer to the study question Post-transplant survival in patients with pulmonary sarcoidosis was similar to that in patients with other indications for lung transplantation. The main factors associated with worse survival were older age and extensive pre-operative lung fibrosis.
  •  
10.
  • Bellaver, B., et al. (author)
  • Astrocyte reactivity influences amyloid-beta effects on tau pathology in preclinical Alzheimer's disease
  • 2023
  • In: Nature Medicine. - 1078-8956. ; 29:7
  • Journal article (peer-reviewed)abstract
    • Cross-sectional and longitudinal analyses of tau pathology in preclinical Alzheimer's disease reveal that tau tangles accumulate as a function of amyloid-beta burden only in individuals positive for an astrocyte reactivity biomarker. An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-beta (A beta)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash A beta effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of A beta with tau phosphorylation in CU individuals. We found that A beta was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast(+)). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of A beta only in CU Ast(+) individuals. Our findings suggest astrocyte reactivity as an important upstream event linking A beta with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view