SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tobita K.) "

Sökning: WFRF:(Tobita K.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sugiyama, K., et al. (författare)
  • Tritium profile in plasma-facing components following D-D operation
  • 2004
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 329-33, s. 874-879
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the tritium depth profile near the surface of the limiter/divertor tiles used in the deuterium fueled machines, such as TEXTOR, TFTR and JT-60U by means of the imaging plate technique and a tritium survey monitor. Tritium depth profiles near the surface of the sample tiles were estimated by comparing the experimental results to a calculation using a 3-D Monte-Carlo code. In every sample tile, there was little tritium in the range from the surface to 1 mum depth. In contrast, tritium density tended to increase beyond 1 mum depth. These results indicate that the tritium retained near the surface was easily removed by isotope exchange with a deuterium plasma or various other tritium removal operations. On the other hand, such operations did not remove tritium retained beyond 1 mum depth, and this could be a potential issue in a next D-T machine.
  •  
2.
  • Fasoli, A., et al. (författare)
  • Chapter 5 : Physics of energetic ions
  • 2007
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 47:6, s. S264-S284
  • Forskningsöversikt (refereegranskat)abstract
    • This chapter reviews the progress accomplished since the redaction of the first ITER Physics Basis (1999 Nucl. Fusion 39 2137-664) in the field of energetic ion physics and its possible impact on burning plasma regimes. New schemes to create energetic ions simulating the fusion-produced alphas are introduced, accessing experimental conditions of direct relevance for burning plasmas, in terms of the Alfvenic Mach number and of the normalised pressure gradient of the energetic ions, though orbit characteristics and size cannot always match those of ITER. Based on the experimental and theoretical knowledge of the effects of the toroidal magnetic field ripple on direct fast ion losses, ferritic inserts in ITER are expected to provide a significant reduction of ripple alpha losses in reversed shear configurations. The nonlinear fast ion interaction with kink and tearing modes is qualitatively understood, but quantitative predictions are missing, particularly for the stabilisation of sawteeth by fast particles that can trigger neoclassical tearing modes. A large database on the linear stability properties of the modes interacting with energetic ions, such as the Alfven eigenmode has been constructed. Comparisons between theoretical predictions and experimental measurements of mode structures and drive/damping rates approach a satisfactory degree of consistency, though systematic measurements and theory comparisons of damping and drive of intermediate and high mode numbers, the most relevant for ITER, still need to be performed. The nonlinear behaviour of Alfven eigenmodes close to marginal stability is well characterized theoretically and experimentally, which gives the opportunity to extract some information on the particle phase space distribution from the measured instability spectral features. Much less data exists for strongly unstable scenarios, characterised by nonlinear dynamical processes leading to energetic ion redistribution and losses, and identified in nonlinear numerical simulations of Alfven eigenmodes and energetic particle modes. Comparisons with theoretical and numerical analyses are needed to assess the potential implications of these regimes on burning plasma scenarios, including in the presence of a large number of modes simultaneously driven unstable by the fast ions.
  •  
3.
  • Lonnroth, J. S., et al. (författare)
  • Effects of ripple-induced ion thermal transport on H-mode plasma performance
  • 2007
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 49:3, s. 273-295
  • Tidskriftsartikel (refereegranskat)abstract
    • A recent series of dimensionless pedestal identity experiments at JET and JT-60U failed to produce a match in the dimensional pedestal parameters and edge-localized mode (ELM) frequency despite a good match in the main dimensionless plasma parameters. This paper describes the progress made in understanding these experimental results. First, it is investigated whether differences in the magnetohydrodynamic stability of the pedestal, including those potentially arising from the 10% difference in the aspect ratio between the two tokamaks, can explain the results. The potential effects of differences in plasma rotation between the two machines are also examined. Given the result that these mechanisms fail to explain the experimental observations and the fact that JT-60U features considerably stronger toroidal magnetic field ripple than JET, the bulk of the paper, however, discusses the effects of ripple losses. The analysis shows that ripple losses of thermal ions can affect H-mode plasma performance very sensitively. Orbit-following simulations indicate that losses due to diffusive transport give rise to a wide radial distribution of enhanced ion thermal transport, whereas non-diffusive losses have a very edge-localized distribution. In predictive transport simulations with an energy sink term in the continuity equation for the ion pressure representing non-diffusive losses, reduced performance as well as an increase in the ELM
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy