SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Toledo Carrillo Esteban) "

Sökning: WFRF:(Toledo Carrillo Esteban)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alvarado Ávila, María Isabel, et al. (författare)
  • Cerium Oxide on a Fluorinated Carbon-Based Electrode as a Promising Catalyst for Hypochlorite Production
  • 2022
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 7:42, s. 37465-37475
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium hypochlorite (NaOCl) is widely used as a disinfectant agent for water treatment and surface cleaning. A straightforward way to produce NaOCl is by the electrolysis of an aqueous sodium chloride (NaCl) solution. This process presents several side reactions decreasing its efficiency with hypochlorite reduction on the cathode surface being one of the main detrimental reactions. In this work, we have studied carbon-based electrodes modified with cerium oxide (CeO2), fluorine, and platinum nanoparticles as cathodes for hypochlorite production. Fluorination was carried out electrochemically; the polyol method was used to synthesize platinum nanoparticles; and the hydrothermal process was applied to form a CeO2 layer. Scanning electron microscopy, FTIR, and inductively coupled plasma (ICP) indicated the presence of cerium oxide as a film, fluorine groups on the substrate, and a load of 3.2 mg/cm2 of platinum nanoparticles and 2.7 mg/cm2 of CeO2. From electrochemical impedance spectroscopy, it was possible to demonstrate that incorporating platinum and fluorine decreases the charge transfer resistance by 16% and 28%, respectively. Linear sweep voltammetry showed a significant decrease in hypochlorite reduction when the substrate was doped with fluorine from -16.6 mA/cm2 at -0.6 V to -9.64 mA/cm2 that further reduced to -8.78 mA/cm2 with cerium oxide covered fluorinated electrodes. The performance of the cathode materials during hypochlorite production improved by 80% compared with pristine activated carbon cloth (ACC) electrodes. The improvement toward hindering NaOCl reduction is probably caused by the incorporation of a partial negative charge upon doping with fluorine.
  •  
2.
  • Alvarado Ávila, María Isabel, et al. (författare)
  • Improved chlorate production with platinum nanoparticles deposited on fluorinated activated carbon cloth electrodes
  • 2020
  • Ingår i: Cleaner Engineering and Technology. - : Elsevier BV. - 2666-7908. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium chlorate is one of the main oxidizing agents used in the wood industry due to their capability of use as an elemental chlorine-free (CEF) bleaching. A simple way to produce chlorates is by the electrolysis of an aqueous sodium chloride (NaCl) solution. In the present study activated carbon cloth electrodes (ACC) modified with fluorine and platinum nanoparticles (Pt–F/ACC and Pt/ACC) were used as one of the electrodes. Electrofluorination was used for fluorination of the anodes and polyol method was used for the synthesis of platinum nanoparticles. Chlorate production using a typical solution of 100 ​g/l of sodium chloride (NaCl) and 2 ​g/l sodium chromate (Na2Cr2O7) and an applied current of 0.540 ​A was studied. Prior to the electrolysis assays, the microstructural properties of the electrodes were characterized by scanning electron microscopy and surface modifications and bonding using infra-red (FTIR) spectroscopy. Electrochemical properties were determined using cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. Interaction between fluorine (F) and platinum (Pt) on the electrode leads to an improvement of the electrocatalytic properties for chlorine evolution as observed from the increase in the current efficiency from 37.5% at 78.5% after 150 ​min of continuous electrolysis using Pt–F/ACC anodes. The results suggest that modified activated carbon material is an attractive and economical alternative as electrodes for chlorate production. 
  •  
3.
  • Bahari, Helma Sadat, et al. (författare)
  • Chitosan nanocomposite coatings with enhanced corrosion inhibition effects for copper
  • 2020
  • Ingår i: International Journal of Biological Macromolecules. - : Elsevier BV. - 0141-8130 .- 1879-0003. ; 162, s. 1566-1577
  • Tidskriftsartikel (refereegranskat)abstract
    • A biopolymer coating on copper was prepared based on chitosan nanocomposite and its corrosion inhibition efficiency was investigated. Inclusion of silica nanoparticles substantially reduces swelling ratio of chitosan coating while enhancing its thermal stability. The corrosion resistance of chitosan-based coatings is improved by introducing 2-mercaptobenzothiazole and silica in the matrix. It is found that upon crosslinking the chitosan coatings, a higher corrosion resistance could be achieved and the highest inhibition efficiency for chitosan nanocomposite coatings is calculated as 85%. The corrosion mechanism is found closely related to mass transition and diffusion process, and also the polarization resistance contributes to the impedance. Calculated impedance using Kramers-Kronig transformation shows good agreement with experimental values, thus validating the impedance measurements. This study exhibits the enhanced efficiency of nanocomposite and potential of chitosan coatings in corrosion prevention for copper.
  •  
4.
  • Das, Biswanath, et al. (författare)
  • Bifunctional and regenerable molecular electrode for water electrolysis at neutral pH
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:25, s. 13331-13340
  • Tidskriftsartikel (refereegranskat)abstract
    • The instability of molecular electrodes under oxidative/reductive conditions and insufficient understanding of the metal oxide-based systems have slowed down the progress of H2-based fuels. Efficient regeneration of the electrode's performance after prolonged use is another bottleneck of this research. This work represents the first example of a bifunctional and electrochemically regenerable molecular electrode which can be used for the unperturbed production of H2 from water. Pyridyl linkers with flexible arms (–CH2–CH2–) on modified fluorine-doped carbon cloth (FCC) were used to anchor a highly active ruthenium electrocatalyst [RuII(mcbp)(H2O)2] (1) [mcbp2− = 2,6-bis(1-methyl-4-(carboxylate)benzimidazol-2-yl)pyridine]. The pyridine unit of the linker replaces one of the water molecules of 1, which resulted in RuPFCC (ruthenium electrocatalyst anchored on –CH2–CH2–pyridine modified FCC), a high-performing electrode for oxygen evolution reaction [OER, overpotential of ∼215 mV] as well as hydrogen evolution reaction (HER, overpotential of ∼330 mV) at pH 7. A current density of ∼8 mA cm−2 at 2.06 V (vs. RHE) and ∼−6 mA cm−2 at −0.84 V (vs. RHE) with only 0.04 wt% loading of ruthenium was obtained. OER turnover of >7.4 × 103 at 1.81 V in 48 h and HER turnover of >3.6 × 103 at −0.79 V in 3 h were calculated. The activity of the OER anode after 48 h use could be electrochemically regenerated to ∼98% of its original activity while it serves as a HE cathode (evolving hydrogen) for 8 h. This electrode design can also be used for developing ultra-stable molecular electrodes with exciting electrochemical regeneration features, for other proton-dependent electrochemical processes.
  •  
5.
  • Das, Biswanath, et al. (författare)
  • Cobalt Electrocatalyst on Fluorine Doped Carbon Cloth – a Robust and Partially Regenerable Anode for Water Oxidation
  • 2022
  • Ingår i: ChemCatChem. - : Wiley. - 1867-3880 .- 1867-3899. ; 14:18
  • Tidskriftsartikel (refereegranskat)abstract
    • The low stability of the electrocatalysts at water oxidation (WO) conditions and the use of expensive noble metals have obstructed large-scale H2 production from water. Herein, we report the electrocatalytic WO activity of a cobalt-containing, water-soluble molecular WO electrocatalyst [CoII(mcbp)(OH2)] (1) [mcbp2−=2,6-bis(1-methyl-4-(carboxylate)benzimidazol-2-yl)pyridine] in homogeneous conditions (overpotential of 510 mV at pH 7 phosphate buffer) and after anchoring it on pyridine-modified fluorine-doped carbon cloth (PFCC). The formation of cobalt phosphate was identified only after 4 h continuous oxygen evolution in homogeneous conditions. Interestingly, a significant enhancement of the stability and WO activity (current density of 5.4 mA/cm2 at 1.75 V) was observed for 1 after anchoring onto PFCC, resulting in a turnover (TO) of >3.6×103 and average TOF of 0.05 s−1 at 1.55 V (pH 7) over 20 h. A total TO of >21×103 over 8 days was calculated. The electrode allowed regeneration of∼ 85 % of the WO activity electrochemically after 36 h of continuous oxygen evolution. 
  •  
6.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  • Nordstrand, Johan, et al. (författare)
  • Ladder Mechanisms of Ion Transport in Prussian Blue Analogues
  • 2022
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 14:1, s. 1102-1113
  • Tidskriftsartikel (refereegranskat)abstract
    • Prussian blue (PB) and its analogues (PBAs) are drawing attention as promising materials for sodium-ion batteries and other applications, such as desalination of water. Because of the possibilities to explore many analogous materials with engineered, defect-rich environments, computational optimization of ion-transport mechanisms that are key to the device performance could facilitate real-world applications. In this work, we have applied a multiscale approach involving quantum chemistry, self-consistent mean-field theory, and finite-element modeling to investigate ion transport in PBAs. We identify a cyanide-mediated ladder mechanism as the primary process of ion transport. Defects are found to be impermissible to diffusion, and a random distribution model accurately predicts the impact of defect concentrations. Notably, the inclusion of intermediary local minima in the models is key for predicting a realistic diffusion constant. Furthermore, the intermediary landscape is found to be an essential difference between both the intercalating species and the type of cation doping in PBAs. We also show that the ladder mechanism, when employed in multiscale computations, properly predicts the macroscopic charging performance based on atomistic results. In conclusion, the findings in this work may suggest the guiding principles for the design of new and effective PBAs for different applications.
  •  
8.
  • Nordstrand, Johan, et al. (författare)
  • Predicting capacitive deionization processes using an electrolytic-capacitor (ELC) model : 2D dynamics, leakages, and multi-ion solutions
  • 2022
  • Ingår i: Desalination. - : Elsevier BV. - 0011-9164 .- 1873-4464. ; 525
  • Tidskriftsartikel (refereegranskat)abstract
    • Clean water and affordable energy are critical worldwide challenges for which electrolytic capacitors are increasingly considered as viable alternatives. The upcoming technology of capacitive deionization (CDI) uses similar electrolytic capacitors for the desalination of water. The current work presents a new method that leverages existing support for supercapacitors in the form of current-distribution models, which enables detailed and separated descriptions of the rate-limiting resistances. Crucially, the new model blends this basis with a novel formulation centered on the adsorption of chemical species in CDI. Put together, it is adaptable to solving a wide range of problems related to chemical species in electrochemical cells. The resulting electrolytic-capacitor (ELC) model has enhanced stability and ease-of-implementation for simulations in 2D. The results demonstrate that the model accurately simulates dynamics CDI performance under a variety of operational conditions. The enhanced stability together with the adaptability further allows tractable simulations of leakage reactions and even handling multi-ion deionization in 2D. Moreover, the model naturally blends with existing interfaces in COMSOL Multiphysics, which automatically generalizes, stabilizes, and simplifies the implementation. In conclusion, the ELC model is user-friendly and tractable for standard simulations while also being especially powerful when simulating complex structures, leakage reactions, and multi-ion solutions.
  •  
9.
  • Nordstrand, Johan, et al. (författare)
  • Sodium to cesium ions: a general ladder mechanism of ion diffusion in prussian blue analogs
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 24:20, s. 12374-12382
  • Tidskriftsartikel (refereegranskat)abstract
    • Prussian blue analogs (PBAs) form crystals with large lattice voids that are suitable for the capture, transport and storage of various interstitial ions. Recently, we introduced the concept of a ladder mechanism to describe how sodium ions inside a PBA crystal structure diffuse by climbing the frames formed by aligned cyanide groups in the host structure. The current work uses semi-empirical tight-binding density functional theory (DFTB) in a multiscale approach to investigate how differences in the size of the monovalent cation affect the qualitative and quantitative aspects of the diffusion process. The results show that the ladder mechanism represents a unified framework, from which both similarities and differences between cation types can be understood. Fundamental Coulombic interactions make all positive cations avoid the open vacant areas in the structure, while cavities surrounded by partially negatively charged cyanide groups form diffusion bottlenecks and traps for larger cations. These results provide a new and quantitative way of understanding the suppression of cesium adsorption that has previously been reported for PBAs characterized by a low vacancy density. In conclusion, this work provides a unified picture of the cation adsorption in PBAs based on the newly formulated ladder mechanism.
  •  
10.
  • Nordstrand, Johan, et al. (författare)
  • Tuning the Cation/Anion Adsorption Balance with a Multi-Electrode Capacitive-Deionization Process
  • 2023
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 0013-4651 .- 1945-7111. ; 170:2, s. 023502-
  • Tidskriftsartikel (refereegranskat)abstract
    • Capacitive deionization (CDI) is an emerging technique for purifying water by removing ions. Recent experimental studies have reported that the anion/cation adsorption can be naturally imbalanced, even for a solution with just sodium and chloride, and suggested a link between imbalance and Faradaic leakages. However, these effects have been missing from conventional models. In this work, we developed a new circuit model to better understand the connection between Faradaic leakages and adsorption imbalance. The theory demonstrates that the effect emerges in a model that includes leakages, considers leakages on both electrodes separately, and considers different leakage resistance on the two electrodes. Having the model, it is possible to analyze and quantify the influence of the leakage resistance and other material properties on the adsorption imbalance. Leveraging these results, we further present a multi-electrode (ME) device design. The setup adds a third electrode to the spacer channel and can tune or eliminate the adsorption imbalance based on appropriately distributing the voltage across the electrodes. In conclusion, we describe a charge leakage mechanism responsible for the imbalance of ion adsorption and a flexible device design to tune the anion/cation removal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (16)
annan publikation (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Dutta, Joydeep, Prof ... (13)
Toledo-Carrillo, Est ... (12)
Alvarado Ávila, Marí ... (4)
Fei, Ye, 1979- (3)
Chen, Jianhong (2)
Garcia, J. (2)
visa fler...
Åkermark, Björn (2)
Kloo, Lars (2)
Göthelid, Mats (2)
Verho, Oscar, 1986- (2)
Slabon, Adam (1)
Li, L. (1)
Rothhaupt, Karl-Otto (1)
Weigend, Maximilian (1)
Farrell, Katharine N ... (1)
Islar, Mine (1)
Krause, Torsten (1)
Uddling, Johan, 1972 (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Battiston, Roberto (1)
Lukic, Marko (1)
Pereira, Laura (1)
Riggi, Laura (1)
Cattaneo, Claudio (1)
Jung, Martin (1)
Andresen, Louise C. (1)
Kasimir, Åsa (1)
Ramirez, J. (1)
Wang-Erlandsson, Lan (1)
Sutherland, William ... (1)
Boonstra, Wiebren J. (1)
Vajda, Vivi (1)
Laxman, karthik (1)
Pascual, Unai (1)
Tscharntke, Teja (1)
Brown, Calum (1)
Peterson, Gustaf (1)
Meyer, Carsten (1)
Seppelt, Ralf (1)
Johansson, Maria (1)
Thersleff, Thomas, 1 ... (1)
Martin, Jean Louis (1)
Weng, Tsu-Chien (1)
Olsson, Urban (1)
Hortal, Joaquin (1)
Buckley, Yvonne (1)
Petrovan, Silviu (1)
Schindler, Stefan (1)
Carvalho, Joana (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (17)
Uppsala universitet (2)
Stockholms universitet (2)
Lunds universitet (1)
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Teknik (7)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy