SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tonezzer Matteo) "

Sökning: WFRF:(Tonezzer Matteo)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Duy, Nguyen Van, et al. (författare)
  • Design and fabrication of effective gradient temperature sensor array based on bilayer SnO2/Pt for gas classification
  • 2022
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier. - 0925-4005 .- 1873-3077. ; 351
  • Tidskriftsartikel (refereegranskat)abstract
    • Classification of different gases is important, and it is possible to use different gas sensors for this purpose. Electronic noses, for example, combine separated gas sensors into an array for detecting different gases. However, the use of separated sensors in an array suffers from being bulky, high-energy consumption and complex fabrication processes. Generally, gas sensing properties, including gas selectivity, of semiconductor gas sensors are strongly dependent on their working temperature. It is therefore feasible to use a single device composed of identical sensors arranged in a temperature gradient for classification of multiple gases. Herein, we introduce a design for simple fabrication of gas sensor array based on bilayer Pt/SnO2 for real-time monitoring and classification of multiple gases. The study includes design simulation of the sensor array to find an effective gradient temperature, fabrication of the sensors and test of their performance. The array, composed of five sensors, was fabricated on a glass substrate without the need of backside etching to reduce heat loss. A SnO2 thin film sensitized with Pt on top deposited by sputtering was used as sensing material. The sensor array was tested against different gases including ethanol, methanol, isopropanol, acetone, ammonia, and hydrogen. Radar plots and principal component analysis were used to visualize the distinction of the tested gases and to enable effective classification.
  •  
2.
  • Duy, Nguyen Van, et al. (författare)
  • Enhancement of NH3 gas sensing with Ag-Pt co-catalyst on SnO2 nanofilm towards medical diagnosis
  • 2023
  • Ingår i: Thin Solid Films. - : Elsevier. - 0040-6090 .- 1879-2731. ; 767
  • Tidskriftsartikel (refereegranskat)abstract
    • Exhaled breath analysis is a noninvasive diagnostic method for fatal disease monitoring and screening, which is recently gained extensive interest of researchers worldwide emphasizing on the development of effective chemiresistive gas sensor for practical application. Here, the Ag-Pt bimetallic nanoparticles were used to deco-rate nanofilms of SnO2 making different gas sensors with high performance. We found that the bimetal alloy improved the sensor performance significantly with super sensitivity as compared with the separate Ag and Pt catalyst. The right ratio of the bimetal made the sensor very sensitive to NH3, so that it was able to quickly (12 s) detect 1 parts-per-million of NH3 with a response of 4.31 at a temperature of 250 degrees C. The sensor limit of detection for NH3 was less than 10 parts-per-billion. The response of the sensor was negligibly affected by humidity and interfering gases. The results showed that the tiny, robust, and inexpensive sensor developed in this work can be used in breath analysis for early diagnosis via NH3 monitoring.
  •  
3.
  • Solangi, Muhammad Yameen, et al. (författare)
  • In-situ growth of nonstoichiometric CrO0.87 and Co3O4 hybrid system for the enhanced electrocatalytic water splitting in alkaline media
  • 2023
  • Ingår i: International journal of hydrogen energy. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0360-3199 .- 1879-3487. ; 48:93, s. 36439-36451
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of electrocatalysts for electrochemical water splitting has received considerable attention in response to the growing demand for renewable energy sources and environmental concerns. In this study, a simple hydrothermal growth approach was developed for the in-situ growth of non-stoichiometric CrO0.87 and Co3O4 hybrid materials. It is apparent that the morphology of the prepared material shows a heterogeneous aggregate of irregularly shaped nanoparticles. Both CrO0.87 and Co3O4 have cubic crystal structures. Its chemical composition was governed by the presence of Co, Cr, and O as its main constituents. For understanding the role CrO0.87 plays in the half-cell oxygen evolu-tion reaction (OER) in alkaline conditions, CrO0.87 was optimized into Co3O4 nanostructures. The hybrid material with the highest concentration of CrO0.87 was found to be highly efficient at driving OER reactions at 255 mV and 20 mA cm(-2). The optimized material demonstrated excellent durability for 45 h and a Tafel slope of 56 mV dec(-1). Several factors may explain the outstanding performance of CrO0.87 and Co3O4 hybrid materials, including multiple metallic oxidation states, tailored surface properties, fast charge transport, and surface defects. An alternative method is proposed for the preparation of new generations of electrocatalysts for the conversion and storage of energy. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  •  
4.
  • Tahira, Aneela, et al. (författare)
  • Role of cobalt precursors in the synthesis of Co 3 O 4 hierarchical nanostructures toward the development of cobalt‐based functional electrocatalysts for bifunctional water splitting in alkaline and acidic media
  • 2022
  • Ingår i: Journal of the Chinese Chemical Society (Taipei). - : John Wiley & Sons. - 0009-4536 .- 2192-6549. ; 69:4, s. 681-691
  • Tidskriftsartikel (refereegranskat)abstract
    • The precursors have significant influence on the catalytic activity of nonprecious electrocatalysts for effective water splitting. Herein, we report active electrocatalysts based on cobalt oxide (Co3O4) hierarchical nanostructures derived from four different precursors of cobalt (acetate, nitrate, chloride, and sulfate salts) using the low-temperature aqueous chemical growth method. It has been found that the effect of precursor on the morphology of nanostructured material depends on the synthetic method. The Co3O4 nanostructures exhibited cubic phase derived from these four precursors. The Co3O4 nanostructures obtained from chloride precursor have demonstrated improved oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) compared to other precursors due relatively higher content of Co3O4 nanostructures at the surface of material. An overpotential of 400 mV versus reversible hydrogen electrode (RHE) at 10 mA cm−2 was observed for HER. The Co3O4 nanostructures derived from the chloride precursor have shown favorable reaction kinetics via 34 mV dec−1 value of the Tafel slope for HER reaction. The Co3O4 nanostructures derived from chloride precursor have also shown an excellent HER durability for 15 hr in alkaline media. Furthermore, the OER functional characterization was carried out onto Co3O4 nanostructures derived from chloride precursor exhibited 220 mV overpotential at 10 mA cm−2 and Tafel slope of 56 mV dec−1. Importantly, the reason behind the favorable catalytic activity of Co3O4 nanostructures derived from chloride precursor was linked to one order of magnitude smaller charge transfer resistance and higher amount of Co3O4 content at the surface of nanostructures than the Co3O4 nanostructures derived from other precursors. The performance of Co3O4 nanostructures derived from chloride precursor via the wet chemical method suggests that cobalt chloride precursor could be of great interest for the development of efficient, stable, nonprecious, and environmentally friendly electrocatalysts for the chemical energy conversion and storage devices.
  •  
5.
  • Thai, Nguyen Xuan, et al. (författare)
  • Multi gas sensors using one nanomaterial, temperature gradient, and machine learning algorithms for discrimination of gases and their concentration
  • 2020
  • Ingår i: Analytica Chimica Acta. - : ELSEVIER. - 0003-2670 .- 1873-4324. ; 1124, s. 85-93
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, four identical micro sensors on the same chip with noble metal decorated tin oxide nanowires as gas sensing material were located at different distances from an integrated heater to work at different temperatures. Their responses are combined in highly informative 4D points that can qualitatively (gas recognition) and quantitatively (concentration estimate) discriminate all the tested gases. Two identical chips were fabricated with tin oxide (SnO2) nanowires decorated with different metal nanoparticles: one decorated with Ag nanoparticles and one with Pt nanoparticles. Support Vector Machine was used as the "brain" of the sensing system. The results show that the systems using these multisensor chips were capable of achieving perfect classification (100%) and good estimation of the concentration of tested gases (errors in the range 8-28%). The Ag decorated sensors did not have a preferential gas, while Pt decorated sensors showed a lower error towards acetone, hydrogen and ammonia. Combination of the two sensor chips improved the overall estimation of gas concentrations, but the individual sensor chips were better for some specific target gases. (C) 2020 Elsevier B.V. All rights reserved.
  •  
6.
  • Thai, Nguyen Xuan, et al. (författare)
  • Prototype edge-grown nanowire sensor array for the real-time monitoring and classification of multiple gases
  • 2020
  • Ingår i: JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES. - : VIETNAM NATL UNIV. - 2468-2284 .- 2468-2179. ; 5:3, s. 409-416
  • Tidskriftsartikel (refereegranskat)abstract
    • The monitoring and classification of different gases using a single resistive semiconductor sensor are challenging because of the similar response characteristics. An array of separated sensors can be used as an electronic nose, but such arrays have a bulky structure and complex fabrication processes. Herein, we easily fabricated a gas-sensor array based on edge-grown SnO2 nanowires for the real-time monitoring and classification of multiple gases. The array comprised four sensors and was designed on a glass substrate. SnO2 nanowires were grown on-chip from the edge of electrodes, made contact together, and acted as sensing elements. This method was advantageous over the post-synthesis technique because the SnO2 nanowires were directly grown from the edge of the electrodes rather than on the surface. Accordingly, damage to the electrode was avoided by alloying Sn with Pt at a high growth temperature. The sensing characteristics of the sensor array were further examined for different gases, including methanol, isopropanol, ethanol, ammonia, hydrogen sulphide and hydrogen. Radar plots were used to improve the selective detection of different gases and enable effective classification. (C) 2020 The Authors. Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi.
  •  
7.
  • Tonezzer, Matteo, et al. (författare)
  • Micrometric thermal electronic nose able to detect and quantify individual gases in a mixture
  • 2024
  • Ingår i: Journal of Science Advanced Materials and Devices. - : Elsevier. - 2468-2284 .- 2468-2179. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent urbanization and environmental problems urge for networks of sensors that can monitor air quality. Small, inexpensive, and smart sensors are one of the key components enabling the realization of such networks. Chemoresistive sensors are the ideal candidate, but they greatly lack selectivity, and for this reason they are usually combined in arrays to create electronic noses, whose dimensions, however, make them not miniaturizable and cannot be integrated into portable devices. To overcome this inconvenience, we present a thermal electronic nose consisting of identical resistive sensors working at different temperatures, so that the whole device is simple to make and tiny. The device contains two sensor arrays based on tin oxide nanowires decorated with Ag and Pt nanoparticles, respectively. The five sensors in each array are identical, but their response is differentiated by different temperatures locally generated by an on-chip integrated heater. This innovative approach allows the tiny array of five sensors together with the integrated heater to occupy only approximately 50x200 μm2 and consume only 120 μW. The tiny and portable device can estimate the concentration of H2 and NH3 in a mixture with a root mean square error of 6.1 ppm and 13.3 ppm respectively, and it still works well after two months. The performance analysis of the double partial least squares regression used for concentration estimation allows also for feedbacking which sensors are the most sensitive to which gas, so that the electronic nose can be engineered for specific applications using the most suitable sensors. The size of the thermal electronic nose allows it to be integrated into portable and wearable devices, and its performance makes it suitable for any gas detection application. For example, a smartphone with an integrated sensor could carry out breath analysis and act as medical pre-screening, or be used to evaluate the freshness of agri-food products in a rapid and non-invasive way.
  •  
8.
  • Tonezzer, Matteo, et al. (författare)
  • Miniaturized multisensor system with a thermal gradient : Performance beyond the calibration range
  • 2023
  • Ingår i: Journal of Science: Advanced Materials and Devices. - : Elsevier BV. - 2468-2179. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Two microchips, each with four identical microstructured sensors using SnO2 nanowires as sensingmaterial (one chip decorated with Ag nanoparticles, the other with Pt nanoparticles), were used as anano-electronic nose to distinguish five different gases and estimate their concentrations. This innovativeapproach uses identical sensors working at different operating temperatures thanks to the thermalgradient created by an integrated microheater. A system with in-house developed hardware and softwarewas used to collect signals from the eight sensors and combine them into eight-dimensional data vectors. These vectors were processed with a support vector machine allowing for qualitative and quantitativediscrimination of all gases after calibration. The system worked perfectly within the calibrated range(100% correct classification, 6.9% average error on concentration value). This work focuses on minimizingthe number of points needed for calibration while maintaining good sensor performance, both forclassification and error in estimating concentration. Therefore, the calibration range (in terms of gasconcentration) was gradually reduced and further tests were performed with concentrations outsidethese new reduced limits. Although with only a few training points, down to just two per gas, the systemperformed well with 96% correct classifications and 31.7% average error for the gases at concentrationsup to 25 times higher than its calibration range. At very low concentrations, down to 20 times lower thanthe calibration range, the system worked less well, with 93% correct classifications and 38.6% averageerror, probably due to proximity to the limit of detection of the sensors.
  •  
9.
  • Trinh, Minh Ngoc, 1978-, et al. (författare)
  • Self-heated Ag-decorated SnO2 nanowires with low power consumption used as a predictive virtual multisensor for H2S-selective sensing
  • 2019
  • Ingår i: Analytica Chimica Acta. - : Elsevier BV. - 0003-2670 .- 1873-4324. ; 1069, s. 108-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Multisensor systems with low-power consumption are emerging for the Internet of Things. In this work, we demonstrate the use of self-heated networked Ag-decorated SnO2 NW sensors integrated into a portable module for selective detection of H2S gas at low power consumption, and the integrated system is simulated as a virtual multisensor under varying heating powers for identifying and quantifying different reducing gases. The H2S gas-sensing characterisations at the different self-heating powers of 2–10 mW showed that the gas response significantly increased with the increase in Ag density decoration and the heated power strongly affected the gas-sensing performance and sensor stability. Excellent response of 21.2 to 0.5 ppm H2S gas was obtained at a low heating power of 2 mW with an acceptable response/recovery time of 18/980 s. The increase of the heating power over 20 mW can destroy the devices. The integrated system could selectively detect H2S at the heating power below 4 mW and H2, C2H5OH and NH3gases at the heating power upon 4 mW. The virtual multisensor could discriminate qualitatively (with an accuracy of 100%) and quantitatively H2S, H2, NH3, C2H5OH (Ethanol) and CH3COCH3 (Aceton) gases with average errors of 13.5%, 14.7%, 16.8%, 16.9%, and 14.8%, respectively. The proposed sensing platform is a promising candidate for selective detection of H2S gas and virtual multisensor with low power consumption for mobile or wireless network devices.
  •  
10.
  • Van Duy, Lai, et al. (författare)
  • Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring
  • 2023
  • Ingår i: Nanomaterials. - : MDPI. - 2079-4991. ; 13:1, s. 146-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas sensors play an important role in many areas of human life, including the monitoring of production processes, occupational safety, food quality assessment, and air pollution monitoring. Therefore, the need for gas sensors to monitor hazardous gases, such as ammonia, at low operating temperatures has become increasingly important in many fields. Sensitivity, selectivity, low cost, and ease of production are crucial characteristics for creating a capillary network of sensors for the protection of the environment and human health. However, developing gas sensors that are not only efficient but also small and inexpensive and therefore integrable into everyday life is a difficult challenge. In this paper, we report on a resistive sensor for ammonia detection based on thin V2O5 nanosheets operating at room temperature. The small thickness and porosity of the V2O5 nanosheets give the sensors good performance for sensing ammonia at room temperature (RT), with a relative change of resistance of 9.4% to 5 ppm ammonia (NH3) and an estimated detection limit of 0.4 ppm. The sensor is selective with respect to the seven interferents tested; it is repeatable and stable over the long term (four months). Although V2O5 is generally an n-type semiconductor, in this case the nanosheets show a p-type semiconductor behavior, and thus a possible sensing mechanism is proposed. The device’s performance, along with its size, low cost, and low power consumption, makes it a good candidate for monitoring freshness and spoilage along the food supply chain.Keywords: gas sensor; vanadium pentoxide; ammonia; nanosheet; room temperature; food quality
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy