SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Toro Claudia) "

Sökning: WFRF:(Toro Claudia)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrés-Jensen, Liv, et al. (författare)
  • Severe toxicity free survival : physician-derived definitions of unacceptable long-term toxicities following acute lymphocytic leukaemia
  • 2021
  • Ingår i: The Lancet Haematology. - : Elsevier. - 2352-3026. ; 8:7, s. E513-E523
  • Forskningsöversikt (refereegranskat)abstract
    • 5-year overall survival rates have surpassed 90% for childhood acute lymphocytic leukaemia, but survivors are at risk for permanent health sequelae. Although event-free survival appropriately represents the outcome for cancers with poor overall survival, this metric is inadequate when cure rates are high but challenged by serious, persistent complications. Accordingly, a group of experts in paediatric haematology-oncology, representative of 17 international acute lymphocytic leukaemia study groups, launched an initiative to construct a measure, designated severe toxicity-free survival (STFS), to quantify the occurrence of physician-prioritised toxicities to be integrated with standard cancer outcome reporting. Five generic inclusion criteria (not present before cancer diagnosis, symptomatic, objectifiable, of unacceptable severity, permanent, or requiring unacceptable treatments) were used to assess 855 health conditions, which resulted in inclusion of 21 severe toxicities. Consensus definitions were reached through a modified Delphi process supplemented by two additional plenary meetings. The 21 severe toxicities include severe adverse health conditions that substantially affect activities of daily living and are refractory to therapy (eg, refractory seizures), are without therapeutic options (eg, blindness), or require substantially invasive treatment (eg, cardiac transplantation). Incorporation of STFS assessment into clinical trials has the potential to improve and diversify treatment strategies, focusing not only on traditional outcome events and overall survival but also the frequencies of the most severe toxicities. The two major aims of this Review were to: prioritise and define unacceptable long-term toxicity for patients with childhood acute lymphocytic leukaemia, and define how these toxicities should be combined into a composite quantity to be integrated with other reported outcomes. Although STFS quantifies the clinically unacceptable health tradeoff for cure using childhood acute lymphocytic leukaemia as a model disease, the prioritised severe toxicities are based on generic considerations of relevance to any other cancer diagnosis and age group.
  •  
2.
  • Charman, Tony, et al. (författare)
  • The EU-AIMS Longitudinal European Autism Project (LEAP) : clinical characterisation.
  • 2017
  • Ingår i: Molecular Autism. - : Springer Science and Business Media LLC. - 2040-2392. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The EU-AIMS Longitudinal European Autism Project (LEAP) is to date the largest multi-centre, multi-disciplinary observational study on biomarkers for autism spectrum disorder (ASD). The current paper describes the clinical characteristics of the LEAP cohort and examines age, sex and IQ differences in ASD core symptoms and common co-occurring psychiatric symptoms. A companion paper describes the overall design and experimental protocol and outlines the strategy to identify stratification biomarkers.METHODS: From six research centres in four European countries, we recruited 437 children and adults with ASD and 300 controls between the ages of 6 and 30 years with IQs varying between 50 and 148. We conducted in-depth clinical characterisation including a wide range of observational, interview and questionnaire measures of the ASD phenotype, as well as co-occurring psychiatric symptoms.RESULTS: The cohort showed heterogeneity in ASD symptom presentation, with only minimal to moderate site differences on core clinical and cognitive measures. On both parent-report interview and questionnaire measures, ASD symptom severity was lower in adults compared to children and adolescents. The precise pattern of differences varied across measures, but there was some evidence of both lower social symptoms and lower repetitive behaviour severity in adults. Males had higher ASD symptom scores than females on clinician-rated and parent interview diagnostic measures but not on parent-reported dimensional measures of ASD symptoms. In contrast, self-reported ASD symptom severity was higher in adults compared to adolescents, and in adult females compared to males. Higher scores on ASD symptom measures were moderately associated with lower IQ. Both inattentive and hyperactive/impulsive ADHD symptoms were lower in adults than in children and adolescents, and males with ASD had higher levels of inattentive and hyperactive/impulsive ADHD symptoms than females.CONCLUSIONS: The established phenotypic heterogeneity in ASD is well captured in the LEAP cohort. Variation both in core ASD symptom severity and in commonly co-occurring psychiatric symptoms were systematically associated with sex, age and IQ. The pattern of ASD symptom differences with age and sex also varied by whether these were clinician ratings or parent- or self-reported which has important implications for establishing stratification biomarkers and for their potential use as outcome measures in clinical trials.
  •  
3.
  • Del Toro De Leon, Gerardo, et al. (författare)
  • Endosperm-specific transcriptome analysis by applying the INTACT system
  • 2019
  • Ingår i: Plant Reproduction. - : Springer Science and Business Media LLC. - 2194-7953 .- 2194-7961. ; 32, s. 55-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Key messageWe report the adaptation of the INTACT method for RNA-sequencing in the endosperm and demonstrate its feasibility for allele-specific expression analysis.AbstractTissue-specific transcriptome analyses provide important insights into the developmental programs of defined cell types. The isolation of nuclei tagged in specific cell types (INTACT) is a versatile method that allows to isolate highly pure nuclei from defined tissue types that can be used for several downstream applications. Here, we describe the adaptation of INTACT from endosperm nuclei for high-throughput RNA-sequencing. By analyzing the ratio of parental reads and tissue-specific gene expression in the endosperm, we could assess the contamination level of our samples. Based on this analysis, we estimate that in most of the samples the contamination level is lower than in previously published datasets. We further show that the nuclear transcriptome and total transcriptome of the endosperm are well correlated. Together, our data show that INTACT of the endosperm is a reliable methodology for endosperm-specific transcriptome analysis that overcomes the limitation of time-consuming manual endosperm dissection that is connected with high levels of maternal tissue contamination. INTACT does not rely on expensive equipment and can be set up in every standard molecular biology laboratory, making it the method of choice for future molecular studies of the endosperm.
  •  
4.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
5.
  • Köhler, Claudia, et al. (författare)
  • Postzygotic reproductive isolation established in the endosperm: mechanisms, drivers and relevance
  • 2021
  • Ingår i: Philosophical Transactions B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 376
  • Forskningsöversikt (refereegranskat)abstract
    • The endosperm is a developmental innovation of angiosperms that supports embryo growth and germination. Aside from this essential reproductive function, the endosperm fuels angiosperm evolution by rapidly establishing reproductive barriers between incipient species. Specifically, the endosperm prevents hybridization of newly formed polyploids with their non-polyploid progenitors, a phenomenon termed the triploid block. Furthermore, recently diverged diploid species are frequently reproductively isolated by endosperm-based hybridization barriers. Current genetic approaches have revealed a prominent role for epigenetic processes establishing these barriers. In particular, imprinted genes, which are expressed in a parent-of-origin-specific manner, underpin the interploidy barrier in the model species Arabidopsis. We will discuss the mechanisms establishing hybridization barriers in the endosperm, the driving forces for these barriers and their impact for angiosperm evolution.This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
  •  
6.
  • Loth, Eva, et al. (författare)
  • The EU-AIMS Longitudinal European Autism Project (LEAP) : design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders.
  • 2017
  • Ingår i: Molecular Autism. - : Springer Science and Business Media LLC. - 2040-2392. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The tremendous clinical and aetiological diversity among individuals with autism spectrum disorder (ASD) has been a major obstacle to the development of new treatments, as many may only be effective in particular subgroups. Precision medicine approaches aim to overcome this challenge by combining pathophysiologically based treatments with stratification biomarkers that predict which treatment may be most beneficial for particular individuals. However, so far, we have no single validated stratification biomarker for ASD. This may be due to the fact that most research studies primarily have focused on the identification of mean case-control differences, rather than within-group variability, and included small samples that were underpowered for stratification approaches. The EU-AIMS Longitudinal European Autism Project (LEAP) is to date the largest multi-centre, multi-disciplinary observational study worldwide that aims to identify and validate stratification biomarkers for ASD.METHODS: LEAP includes 437 children and adults with ASD and 300 individuals with typical development or mild intellectual disability. Using an accelerated longitudinal design, each participant is comprehensively characterised in terms of clinical symptoms, comorbidities, functional outcomes, neurocognitive profile, brain structure and function, biochemical markers and genomics. In addition, 51 twin-pairs (of which 36 had one sibling with ASD) are included to identify genetic and environmental factors in phenotypic variability.RESULTS: Here, we describe the demographic characteristics of the cohort, planned analytic stratification approaches, criteria and steps to validate candidate stratification markers, pre-registration procedures to increase transparency, standardisation and data robustness across all analyses, and share some 'lessons learnt'. A clinical characterisation of the cohort is given in the companion paper (Charman et al., accepted).CONCLUSION: We expect that LEAP will enable us to confirm, reject and refine current hypotheses of neurocognitive/neurobiological abnormalities, identify biologically and clinically meaningful ASD subgroups, and help us map phenotypic heterogeneity to different aetiologies.
  •  
7.
  • Mason, L., et al. (författare)
  • Preference for biological motion is reduced in ASD : implications for clinical trials and the search for biomarkers
  • 2021
  • Ingår i: Molecular Autism. - : Springer Nature. - 2040-2392. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The neurocognitive mechanisms underlying autism spectrum disorder (ASD) remain unclear. Progress has been largely hampered by small sample sizes, variable age ranges and resulting inconsistent findings. There is a pressing need for large definitive studies to delineate the nature and extent of key case/control differences to direct research towards fruitful areas for future investigation. Here we focus on perception of biological motion, a promising index of social brain function which may be altered in ASD. In a large sample ranging from childhood to adulthood, we assess whether biological motion preference differs in ASD compared to neurotypical participants (NT), how differences are modulated by age and sex and whether they are associated with dimensional variation in concurrent or later symptomatology.Methods: Eye-tracking data were collected from 486 6-to-30-year-old autistic (N = 282) and non-autistic control (N = 204) participants whilst they viewed 28 trials pairing biological (BM) and control (non-biological, CTRL) motion. Preference for the biological motion stimulus was calculated as (1) proportion looking time difference (BM-CTRL) and (2) peak look duration difference (BM-CTRL).Results: The ASD group showed a present but weaker preference for biological motion than the NT group. The nature of the control stimulus modulated preference for biological motion in both groups. Biological motion preference did not vary with age, gender, or concurrent or prospective social communicative skill within the ASD group, although a lack of clear preference for either stimulus was associated with higher social-communicative symptoms at baseline.Limitations: The paired visual preference we used may underestimate preference for a stimulus in younger and lower IQ individuals. Our ASD group had a lower average IQ by approximately seven points. 18% of our sample was not analysed for various technical and behavioural reasons.Conclusions: Biological motion preference elicits small-to-medium-sized case–control effects, but individual differences do not strongly relate to core social autism associated symptomatology. We interpret this as an autistic difference (as opposed to a deficit) likely manifest in social brain regions. The extent to which this is an innate difference present from birth and central to the autistic phenotype, or the consequence of a life lived with ASD, is unclear.
  •  
8.
  • Moreno Romero, Jordi, et al. (författare)
  • Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm
  • 2019
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundImprinted genes are epigenetically modified during gametogenesis and maintain the established epigenetic signatures after fertilization, causing parental-specific gene expression.ResultsIn this study, we show that imprinted paternally expressed genes (PEGs) in the Arabidopsis endosperm are marked by an epigenetic signature of Polycomb Repressive Complex2 (PRC2)-mediated H3K27me3 together with heterochromatic H3K9me2 and CHG methylation, which specifically mark the silenced maternal alleles of PEGs. The co-occurrence of H3K27me3 and H3K9me2 on defined loci in the endosperm drastically differs from the strict separation of both pathways in vegetative tissues, revealing tissue-specific employment of repressive epigenetic pathways in plants. Based on the presence of this epigenetic signature on maternal alleles, we are able to predict known PEGs at high accuracy and identify several new PEGs that we confirm using INTACT-based transcriptomes generated in this study.ConclusionsThe presence of the three repressive epigenetic marks, H3K27me3, H3K9me2, and CHG methylation on the maternal alleles in the endosperm serves as a specific epigenetic signature that allows prediction of genes with parental-specific gene expression. Our study reveals that there are substantially more PEGs than previously identified, indicating that paternal-specific gene expression is of higher functional relevance than currently estimated. The combined activity of PRC2-mediated H3K27me3 together with the heterochromatic H3K9me3 has also been reported to silence the maternal Xist locus in mammalian preimplantation embryos, suggesting convergent employment of both pathways during the evolution of genomic imprinting.
  •  
9.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
10.
  • Wang, Guifeng, et al. (författare)
  • Sequestration of a Transposon-Derived siRNA by a Target Mimic Imprinted Gene Induces Postzygotic Reproductive Isolation in Arabidopsis
  • 2018
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 46, s. 696-705
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomic imprinting is an epigenetic phenomenon occurring in mammals and flowering plants, causing genes to be expressed depending on their parent of origin. In plants, genomic imprinting is mainly confined to the endosperm, a nutritive tissue supporting embryo growth, similar to the placenta in mammals. Here, we show that the paternally expressed imprinted gene PEG2 transcript sequesters the transposable element (TE)-derived small interfering RNA (siRNA) siRNA854 in the endosperm. siRNA854 is present in the vegetative cell of pollen and transferred to the central cell of the female gametophyte after fertilization, where it is captured by PEG2. Depletion of siRNA854 as a consequence of increased PEG2 transcript levels establishes a reproductive barrier and prevents successful hybridizations between plants differing in chromosome number (ploidy). Thus, the balance of a male gamete accumulating TE-derived siRNA and a paternally expressed imprinted gene regulate triploid seed viability, revealing a transgenerational speciation mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (9)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (11)
Författare/redaktör
Meyer-Lindenberg, An ... (5)
Franke, Barbara (2)
Westman, Eric (2)
Tsolaki, Magda (2)
Ching, Christopher R ... (2)
Agartz, Ingrid (2)
visa fler...
Brouwer, Rachel M (2)
Melle, Ingrid (2)
Westlye, Lars T (2)
Thompson, Paul M (2)
Andreassen, Ole A (2)
Isaksson, Johan (2)
Bölte, Sven (2)
Andersson, Micael (2)
Axelsson, Tomas (2)
van der Wee, Nic J. ... (2)
Ikram, M. Arfan (2)
Amin, Najaf (2)
van Duijn, Cornelia ... (2)
Chen, Qiang (2)
Rotter, Jerome I. (2)
Soininen, Hilkka (2)
Weinberger, Daniel R (2)
de Geus, Eco J. C. (2)
Martin, Nicholas G. (2)
Boomsma, Dorret I. (2)
Heslenfeld, Dirk J. (2)
van der Meer, Dennis (2)
Djurovic, Srdjan (2)
Doan, Nhat Trung (2)
Thalamuthu, Anbupala ... (2)
Cichon, Sven (2)
Rietschel, Marcella (2)
Schofield, Peter R (2)
Schmidt, Reinhold (2)
Schmidt, Helena (2)
Deary, Ian J (2)
Mattheisen, Manuel (2)
Bourgeron, Thomas (2)
Wassink, Thomas H (2)
Lopez, Oscar L. (2)
Montgomery, Grant W. (2)
Heinz, Andreas (2)
Le Hellard, Stephani ... (2)
Fornage, Myriam (2)
Homuth, Georg (2)
Launer, Lenore J (2)
Francks, Clyde (2)
Hofman, Albert (2)
Uitterlinden, André ... (2)
visa färre...
Lärosäte
Uppsala universitet (7)
Karolinska Institutet (6)
Sveriges Lantbruksuniversitet (4)
Umeå universitet (3)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)
Naturvetenskap (5)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy