SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Torstensson Karl 1977) "

Sökning: WFRF:(Torstensson Karl 1977)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belitsky, Victor, 1955, et al. (författare)
  • SEPIA - A new single pixel receiver at the APEX telescope
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We describe the new Swedish-ESO PI Instrument for APEX (SEPIA) receiver, which was designed and built by the Group for Advanced Receiver Development (GARD), at Onsala Space Observatory (OSO) in collaboration with ESO. It was installed and commissioned at the APEX telescope during 2015 with an ALMA Band 5 receiver channel and updated with a new frequency channel (ALMA Band 9) in February 2016. Aim. This manuscript aims to provide, for observers who use the SEPIA receiver, a reference in terms of the hardware description, optics and performance as well as the commissioning results. Methods. Out of three available receiver cartridge positions in SEPIA, the two current frequency channels, corresponding to ALMA Band 5, the RF band 158-211 GHz, and Band 9, the RF band 600-722 GHz, provide state-of-the-art dual polarization receivers. The Band 5 frequency channel uses 2SB SIS mixers with an average SSB noise temperature around 45 K with IF (intermediate frequency) band 4-8 GHz for each sideband providing total 4 × 4 GHz IF band. The Band 9 frequency channel uses DSB SIS mixers with a noise temperature of 75-125 K with IF band 4-12 GHz for each polarization. Results. Both current SEPIA receiver channels are available to all APEX observers.
  •  
2.
  • Meledin, Denis, 1974, et al. (författare)
  • SEPIA345: A 345 GHz dual polarization heterodyne receiver channel for SEPIA at the APEX telescope
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We describe the new SEPIA345 heterodyne receiver channel installed at the Atacama Pathfinder EXperiment (APEX) telescope, including details of its configuration, characteristics, and test results on sky. SEPIA345 is designed and built to be a part of the Swedish ESO PI Instrument for the APEX telescope (SEPIA). This new receiver channel is suitable for very high-resolution spectroscopy and covers the frequency range 272- 376 GHz. It utilizes a dual polarization sideband separating (2SB) receiver architecture, employing superconductor-isolator-superconductor mixers (SIS), and provides an intermediate frequency (IF) band of 4- 12 GHz for each sideband and polarization, thus covering a total instantaneous IF bandwidth of 4 ÃÂ - 8 = 32 GHz. Aims. This paper provides a description of the new receiver in terms of its hardware design, performance, and commissioning results. Methods. The methods of design, construction, and testing of the new receiver are presented. Results. The achieved receiver performance in terms of noise temperature, sideband rejection, stability, and other parameters are described. Conclusions. SEPIA345 is a commissioned APEX facility instrument with state-of-the-art wideband IF performance. It has been available on the APEX telescope for science observations since July 2021.
  •  
3.
  • Meledin, Denis, 1974, et al. (författare)
  • SEPIA345: a dual polarization 2SB cartridge receiver for APEX telescope: Design and Performance
  • 2023
  • Ingår i: Proceedings of the 32nd IEEE International Symposium on Space THz Technology.
  • Konferensbidrag (refereegranskat)abstract
    • A new receiver channel covering the 271-377 GHz frequency band has been installed into the SEPIA receiver at the APEX telescope. The receiver channel was designed and built in an ALMA-compatible cartridge layout. The receiver has a dual polarization layout with OMT and employs 2SB SIS mixers featuring an extended 4-12 GHz IF band, providing 32 GHz instantaneous IF bandwidth for two polarizations and two sidebands.
  •  
4.
  • Meledin, Denis, 1974, et al. (författare)
  • SEPIA345: a dual polarization 2SB cartridge receiver for APEX telescope: Design and Performance
  • 2022
  • Ingår i: 32nd International Symposium of Space Terahertz Technology, ISSTT 2022.
  • Konferensbidrag (refereegranskat)abstract
    • A new receiver channel covering the 271-377 GHz frequency band has been installed into the SEPIA receiver at the APEX telescope. The receiver channel was designed and built in an ALMA-compatible cartridge layout. The receiver has a dual polarization layout with OMT and employs 2SB SIS mixers featuring an extended 4-12 GHz IF band, providing 32 GHz instantaneous IF bandwidth for two polarizations and two sidebands.
  •  
5.
  • Baudry, A., et al. (författare)
  • Vibrationally excited water emission at 658 GHz from evolved stars
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 609
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Several rotational transitions of ortho- and para-water have been identified toward evolved stars in the ground vibrational state as well as in the first excited state of the bending mode (v2 = 1 in (0, 1, 0) state). In the latter vibrational state of water, the 658 GHz J = 1 1,0 -1 0,1 rotational transition is often strong and seems to be widespread in late-type stars. Aims. Our main goals are to better characterize the nature of the 658 GHz emission, compare the velocity extent of the 658 GHz emission with SiO maser emission to help locate the water layers and, more generally, investigate the physical conditions prevailing in the excited water layers of evolved stars. Another goal is to identify new 658 GHz emission sources and contribute in showing that this emission is widespread in evolved stars. Methods. We have used the J = 1 1,0 -1 0,1 rotational transition of water in the (0, 1, 0) vibrational state nearly 2400 K above the ground-state to trace some of the physical conditions of evolved stars. Eleven evolved stars were extracted from our mini-catalog of existing and potential 658 GHz sources for observations with the Atacama Pathfinder EXperiment (APEX) telescope equipped with the SEPIA Band 9 receiver. The 13 CO J = 6-5 line at 661 GHz was placed in the same receiver sideband for simultaneous observation with the 658 GHz line of water. We have compared the ratio of these two lines to the same ratio derived from HIFI earlier observations to check for potential time variability in the 658 GHz line. We have compared the 658 GHz line properties with our H 2 O radiative transfer models in stars and we have compared the velocity ranges of the 658 GHz and SiO J = 2-1, v = 1 maser lines. Results. Eleven stars have been extracted from our catalog of known or potential 658 GHz evolved stars. All of them show 658 GHz emission with a peak flux density in the range ≈ 50-70 Jy (RU Hya and RT Eri) to ≈ 2000-3000 Jy (VY CMa and W Hya). Five Asymptotic Giant Branch (AGB) stars and one supergiant (AH Sco) are new detections. Three AGBs and one supergiant (VY CMa) exhibit relatively weak 13 CO J = 6-5 line emission while o Ceti shows stronger 13 CO emission. We have shown that the 658 GHz line is masing and we found that the 658 GHz velocity extent tends to be correlated with that of the SiO maser suggesting that both emission lines are excited in circumstellar layers close to the central star. Broad and stable line profiles are observed at 658 GHz. This could indicate maser saturation although we have tentatively provided first information on time variability at 658 GHz.
  •  
6.
  • Duarte-Cabral, A., et al. (författare)
  • The SEDIGISM survey: Molecular clouds in the inner Galaxy
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3027-3049
  • Forskningsöversikt (refereegranskat)abstract
    • We use the 13CO(2-1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES) algorithm. This work compiles a cloud catalogue with a total of 10 663 molecular clouds, 10 300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well-resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density, and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases (such as completeness and survey limitations), and thus require further follow up work in order to be confirmed.
  •  
7.
  • Humphreys, E. M., et al. (författare)
  • Simultaneous 183 GHz H2O maser and SiO observations towards evolved stars using APEX SEPIA Band 5
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 603, s. A77-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The aim is to investigate the use of 183 GHz H2O masers for characterization of the physical conditions and mass loss process in the circumstellar envelopes of evolved stars. Methods. We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to observe the 183 GHz H2O line towards two red supergiant (RSG) and three asymptotic giant branch (AGB) stars. Simultaneously, we observed the J = 4-3 line for (SiO)-Si-28 nu = 0, 1, 2 and 3, and for (SiO)-Si-29 nu = 0 and 1. We compared the results with simulations and radiative transfer models for H2O and SiO, and examined data for the individual linear orthogonal polarizations. Results. We detected the 183 GHz H2O line towards all the stars with peak flux densities >100 Jy, including a new detection from VYCMa. Towards all five targets, the water line had indications of being caused by maser emission and had higher peak flux densities than for the SiO lines. The SiO lines appear to originate from both thermal and maser processes. Comparison with simulations and models indicate that 183 GHz maser emission is likely to extend to greater radii in the circumstellar envelopes than SiO maser emission and to similar or greater radii than water masers at 22, 321 and 325 GHz. We speculate that a prominent blue-shifted feature in the WHya 183 GHz spectrum is amplifying the stellar continuum, and is located at a similar distance from the star as mainline OH maser emission. We note that the coupling of an SiO maser model to a hydrodynamical pulsating model of an AGB star yields qualitatively similar simulated results to the observations. From a comparison of the individual polarizations, we find that the SiO maser linear polarization fraction of several features exceeds the maximum fraction allowed under standard maser assumptions and requires strong anisotropic pumping of the maser transition and strongly saturated maser emission. The low polarization fraction of the H2O maser however, fits with the expectation for a non-saturated maser. Conclusions. 183 GHz H2O masers can provide strong probes of the mass loss process of evolved stars. Higher angular resolution observations of this line using ALMA Band 5 will enable detailed investigation of the emission location in circumstellar envelopes and can also provide information on magnetic field strength and structure.
  •  
8.
  • Torstensson, Karl, 1977, et al. (författare)
  • Methanol masers and millimetre lines: a common origin in protostellar envelopes
  • 2012
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 8:5287, s. 146-150
  • Konferensbidrag (refereegranskat)abstract
    • To understand the origin of the CH3OH maser emission, we map the distribution and excitation of the thermal CH3OH emission in a sample of 14 relatively nearby (
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy