SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tosar Juan P.) "

Sökning: WFRF:(Tosar Juan P.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Welsh, Joshua A., et al. (författare)
  • Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
  • 2024
  • Ingår i: Journal of Extracellular Vesicles. - : John Wiley and Sons Inc. - 2001-3078. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
  •  
2.
  • Garcia Silva, Maria R., et al. (författare)
  • Cloning, characterization, and subcellular localization of a Trypanosoma cruzi argonaute protein defining a new subfamily distinctive of trypanosomatids
  • 2010
  • Ingår i: Gene. - : Elsevier BV. - 1879-0038 .- 0378-1119. ; 466:1-2, s. 26-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last years an expanding family of small non-coding RNAs (sRNA) has been identified in eukaryotic genomes which behave as sequence-specific triggers for mRNA degradation, translation repression, heterochromatin formation and genome stability. To achieve their effectors functions, sRNAs associate with members of the Argonaute protein family. Argonaute proteins are segregated into three paralogous groups: the AGO-like subfamily, the PIWI-like subfamily, and the WAGO subfamily (for Worm specific AGO). Detailed phylogenetic analysis of the small RNA-related machinery components revealed that they can be traced back to the common ancestor of eukaryotes. However, this machinery seems to be lost or excessively simplified in some unicellular organisms such as Saccharomyces cerevisiae, Trypanosoma cruzi, Leishmania major and Plasmodium falciparum which are unable to utilize dsRNA to trigger degradation of target RNAs. We reported here a unique ORF encoding for an AGO/PIWI protein in T. cruzi which was expressed in all stages of its life cycle at the transcript as well as the protein level. Database search for remote homologues, revealed the presence of a divergent PAZ domain adjacent to the well supported PIWI domain. Our results strongly suggested that this unique AGO/PIWI protein from T. cruzi is a canonical Argonaute in terms of its domain architecture. We propose to reclassify all Argonaute members from trypanosomatids as a distinctive phylogenetic group representing a new subfamily of Argonaute proteins and propose the generic designation of AGO/PIWI-tryp to identify them. Inside the Trypanosomatid-specific node, AGO/PIWI-tryps were clearly segregated into two paralog groups designated as AGO-tryp and PIWI-tryp according to the presence or absence of a functional link with RNAi-related phenomena, respectively. (C) 2010 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy