SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tour G) "

Sökning: WFRF:(Tour G)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tour, G, et al. (författare)
  • Bone repair using periodontal ligament progenitor cell-seeded constructs
  • 2012
  • Ingår i: Journal of dental research. - : SAGE Publications. - 1544-0591 .- 0022-0345. ; 91:8, s. 789-794
  • Tidskriftsartikel (refereegranskat)abstract
    • The success of tissue-engineering therapies is dependent on the ability of scaffolds to guide differentiation of progenitor cells. Here we present a new approach using a biomimetic construct composed of hydroxyapatite modified with an in vitro-derived extracellular matrix (HA-ECM) and seeded with periodontal ligament progenitor cells (PDLCs). The study aimed to investigate the effect of HA-ECM on osteogenic differentiation of PDLCs and in vivo evaluation of the PDLC-seeded HA-ECM constructs using a rat calvarial critical-sized defect model. After flow-cytometric phenotyping of PDLCs for typical mesenchymal stem cell markers, the PDLCs were cultured on HA-ECM or HA alone in osteogenic media and assessed by MTT, alkaline phosphatase (ALP) assays, and real-time qPCR at different time intervals after seeding. New bone formation induced by PDLC-seeded constructs was assessed by histomorphometric analysis at 12 weeks post-operatively. The PDLCs seeded on HA-ECM showed significantly higher ALP activity and up-regulation of bone-related genes. The treatment with PDLC-seeded HA-ECM significantly improved calvarial bone repair, with the highest amount of newly formed bone elicited by cell-seeded constructs cultured for 14 days. Our results highlight the PDLC-seeded HA-ECM constructs as a promising tool for craniofacial bone regeneration.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Schmidt, John, et al. (författare)
  • Substrate and plant genotype strongly influence the growth and gene expression response to trichoderma afroharzianum T22 in sugar beet
  • 2020
  • Ingår i: Plants. - : MDPI AG. - 2223-7747. ; 9:8, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Many strains of Trichoderma fungi have beneficial effects on plant growth and pathogen control, but little is known about the importance of plant genotype, nor the underlying mechanisms. We aimed to determine the effect of sugar beet genotypic variation on Trichoderma biostimulation. The effect of Trichoderma afroharzianum T22 on sugar beet inbred genotypes were investigated in soil and on sterile agar medium regarding plant growth, and by quantitative reverse transcriptase-linked polymerase chain reaction (qRT-PCR) analysis for gene expression. In soil, T22 application induced up to 30% increase or decrease in biomass, depending on plant genotype. In contrast, T22 treatment of sterile-grown seedlings resulted in a general decrease in fresh weight and root length across all sugar beet genotypes. Root colonization of T22 did not vary between the sugar beet genotypes. Sand-and sterile-grown roots were investigated by qRT-PCR for expression of marker genes for pathogen response pathways. Genotype-dependent effects of T22 on, especially, the jasmonic acid/ethylene expression marker PR3 were observed, and the effects were further dependent on the growth system used. Thus, both growth substrate and sugar beet genotype strongly affect the outcome of inoculation with T. afroharzianum T22.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy