SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tran Sinh) "

Sökning: WFRF:(Tran Sinh)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bett, Bernard, et al. (författare)
  • Spatiotemporal analysis of historical records (2001-2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk
  • 2019
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Dengue fever is the most widespread infectious disease of humans transmitted by Aedes mosquitoes. It is the leading cause of hospitalization and death in children in the Southeast Asia and western Pacific regions. We analyzed surveillance records from health centers in Vietnam collected between 2001-2012 to determine seasonal trends, develop risk maps and an incidence forecasting model.METHODS: The data were analyzed using a hierarchical spatial Bayesian model that approximates its posterior parameter distributions using the integrated Laplace approximation algorithm (INLA). Meteorological, altitude and land cover (LC) data were used as predictors. The data were grouped by province (n = 63) and month (n = 144) and divided into training (2001-2009) and validation (2010-2012) sets. Thirteen meteorological variables, 7 land cover data and altitude were considered as predictors. Only significant predictors were kept in the final multivariable model. Eleven dummy variables representing month were also fitted to account for seasonal effects. Spatial and temporal effects were accounted for using Besag-York-Mollie (BYM) and autoregressive (1) models. Their levels of significance were analyzed using deviance information criterion (DIC). The model was validated based on the Theil's coefficient which compared predicted and observed incidence estimated using the validation data. Dengue incidence predictions for 2010-2012 were also used to generate risk maps.RESULTS: The mean monthly dengue incidence during the period was 6.94 cases (SD 14.49) per 100,000 people. Analyses on the temporal trends of the disease showed regular seasonal epidemics that were interrupted every 3 years (specifically in July 2004, July 2007 and September 2010) by major fluctuations in incidence. Monthly mean minimum temperature, rainfall, area under urban settlement/build-up areas and altitude were significant in the final model. Minimum temperature and rainfall had non-linear effects and lagging them by two months provided a better fitting model compared to using unlagged variables. Forecasts for the validation period closely mirrored the observed data and accurately captured the troughs and peaks of dengue incidence trajectories. A favorable Theil's coefficient of inequality of 0.22 was generated.CONCLUSIONS: The study identified temperature, rainfall, altitude and area under urban settlement as being significant predictors of dengue incidence. The statistical model fitted the data well based on Theil's coefficient of inequality, and risk maps generated from its predictions identified most of the high-risk provinces throughout the country.
  •  
2.
  • Andersson, Helena M., et al. (författare)
  • Activated protein C cofactor function of protein S: a critical role for Asp95 in the EGF1-like domain
  • 2010
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 115:23, s. 4878-4885
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein S has an established role in the protein C anticoagulant pathway, where it enhances the factor Va (FVa) and factor VIIIa (FVIIIa) inactivating property of activated protein C (APC). Despite its physiological role and clinical importance, the molecular basis of its action is not fully understood. To clarify the mechanism of the protein S interaction with APC, we have constructed and expressed a library of composite or point variants of human protein S, with residue substitutions introduced into the Gla, thrombin-sensitive region (TSR), epidermal growth factor 1 (EGF1), and EGF2 domains. Cofactor activity for APC was evaluated by calibrated automated thrombography (CAT) using protein S-deficient plasma. Of 27 variants tested initially, only one, protein S D95A (within the EGF1 domain), was largely devoid of functional APC cofactor activity. Protein S D95A was, however, gamma-carboxylated and bound phospholipids with an apparent dissociation constant (Kd(app)) similar to that of wildtype (WT) protein S. In a purified assay using FVa R506Q/R679Q, purified protein S D95A was shown to have greatly reduced ability to enhance APC-induced cleavage of FVa Arg306. It is concluded that residue Asp95 within EGF1 is critical forAPC cofactor function of protein S and could define a principal functional interaction site for APC. (Blood. 2010;115(23):4878-4885)
  •  
3.
  • Dahlbäck, Björn, et al. (författare)
  • A hydrophobic patch (PLVIVG; 1481–1486) in the B-domain of factor V-short is crucial for its synergistic TFPIα-cofactor activity with protein S and for the formation of the FXa-inhibitory complex comprising FV-short, TFPIα, and protein S
  • 2022
  • Ingår i: Journal of Thrombosis and Haemostasis. - : Elsevier BV. - 1538-7933 .- 1538-7836. ; 20:5, s. 1146-1157
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Factor V-short (FV756-1458) is a natural splice variant functioning in synergy with protein S as tissue factor pathway inhibitor alpha (TFPIα)–cofactor in inhibition of factor Xa (FXa). An exposed acid region (AR2; 1493–1537) in the B domain binds TFPIα. The preAR2 (1458–1492) is crucial for the synergistic TFPIα–cofactor activity between FV-short and protein S and for assembly of a trimolecular FXa-inhibitory complex among FV-short, protein S, and TFPIα. Objective: To identify which part of preAR2 is required for the synergistic TFPIα–cofactor activity between FV-short and protein S. Methods: A FXa-inhibition assay was used to test the synergistic TFPIα cofactor activity between protein S and new FV-short variants FV709-1476, FV712-1478, FV712-1481, FV712-1484, FV712-1487, and FV712-1490. A microtiter-based assay analyzed binding among FV-short variants, protein S, and TFPIα. Results: FV709-1476, FV712-1478, and FV712-1481 were fully active as synergistic TFPIα cofactors with protein S; FV712-1484 showed intermediate activity; and FV712-1487 and FV712-1490 were inactive. TFPIα interacted with all variants in the absence of protein S but FV712-1478 and FV712-1481 bound TFPIα with highest affinity. None of the FV-short variants bound directly to protein S in the absence of TFPIα. In the presence of TFPIα, efficient cooperative binding was demonstrated between protein S, TFPIα, and FV709-1476, FV712-1478, or FV712-1481. In contrast, no cooperativity among TFPIα, protein S, and FV712-1484, FV712-1487, or FV712-1490 was seen. Conclusion: A short hydrophobic patch in preAR2 (PLVIVG, 1481–1486) in FV-short is crucial for the synergistic TFPIα-cofactor activity between FV-short and protein S and for the assembly of a trimolecular FXa-inhibitory complex among FV-short, protein S, and TFPIα.
  •  
4.
  •  
5.
  • Dahlbäck, Björn, et al. (författare)
  • New functional test for the TFPIα cofactor activity of Protein S working in synergy with FV-Short
  • 2019
  • Ingår i: Journal of Thrombosis and Haemostasis. - : Elsevier BV. - 1538-7933 .- 1538-7836. ; 17:4, s. 585-595
  • Tidskriftsartikel (refereegranskat)abstract
    • Essentials Protein S and FV-Short are synergistic cofactors to Tissue Factor Pathway Inhibitor α (TFPIα). An assay for the TFPIα synergistic cofactor activity of protein S with FV-Short was developed. The assay was specific for the synergistic TFPIα-cofactor activity of free protein S. Protein S deficient individuals with known mutations were correctly distinguished from controls. Summary: Background Protein S is an anticoagulant cofactor to both activated protein C and tissue factor pathway inhibitor (TFPIα). The TFPIα-cofactor activity of protein S is stimulated by a short isoform of factor V (FV-Short), the two proteins functioning in synergy. Objective Using the synergistic TFPIα-cofactor activity between protein S and FV-Short to develop a functional test for plasma protein S. Patients/Methods TFPIα-mediated inhibition of FXa in the presence of FV-Short, protein S and negatively charged phospholipid vesicles was monitored in time by synthetic substrate S2765. TFPIα, FXa and FV-Short were purified proteins, whereas diluted plasma from protein S deficient patients or controls were used as source for protein S. Results The assay was specific for free protein S demonstrating good correlation to free protein S plasma levels (r = 0.92) with a Y-axis intercept of −5%. Correlation to concentrations of total protein S (free and C4BPβ+-bound) was lower (r = 0.88) and the Y-axis intercept was +46%, which is consistent with the specificity for free protein S. The test distinguished protein S-deficient individuals from 6 families with known ProS1 mutations from family members having no mutation. Protein S levels of warfarin-treated protein S deficient cases were lower than protein S in cases treated with warfarin for other causes. Conclusions We describe a new assay measuring the TFPIα-cofactor activity of plasma protein S. The test identifies type I/III protein S deficiencies and will be a useful tool to detect type II protein S deficiency having defective TFPIα-cofactor activity.
  •  
6.
  • Dahlbäck, Björn, et al. (författare)
  • The preAR2 region (1458–1492) in factor V-Short is crucial for the synergistic TFPIα-cofactor activity with protein S and the assembly of a trimolecular factor Xa-inhibitory complex comprising FV-Short, protein S, and TFPIα
  • 2022
  • Ingår i: Journal of Thrombosis and Haemostasis. - : Elsevier BV. - 1538-7933 .- 1538-7836. ; 20:1, s. 58-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Factor V-Short (FV756-1458) is a natural splice variant in which 702 residues are deleted from the B domain. It exposes an acid region (AR2; 1493–1537) that binds tissue factor pathway inhibitor alpha (TFPIα). Protein S also interacts with TFPIα and serves as TFPIα-cofactor in factor Xa (FXa) inhibition. FV-Short and protein S function as synergistic TFPIα-cofactors in inhibition of FXa. FV810-1492 is an artificial FV-Short variant that cannot synergize with protein S as TFPIα cofactor even though it contains AR2 and binds TFPIα. Objective: To elucidate the mechanisms for the synergism between FV756-1458 and protein S as TFPIα cofactors. Methods: Four FV-Short variants were created, FV756-1458 and FV712-1458 contained the preAR2 region (1458–1492), whereas FV810-1492 and FV713-1492 lacked this region. The synergistic TFPIα cofactor activity between FV-Short variants and protein S was analyzed by FXa-inhibition. A microtiter-based assay tested binding between FV-Short variants, protein S, and TFPIα. Results: The two preAR2-containing FV-Short variants were active as synergistic TFPIα cofactors, whereas the other two were inactive. All variants bound to TFPIα. None of the FV-Short variants bound directly to protein S. The combination of TFPIα and preAR2-containing FV-Short variants bound protein S, whereas TFPIα together with the preAR2-minus variants did not. Protein S potentiated TFPIα-binding to the preAR2-containing variants and binding between TFPIα and protein S was stimulated only by the preAR2-containing variants. Conclusion: The preAR2 region is demonstrated to be crucial for the synergistic TFPIα-cofactor activity between FV-Short and protein S and for the assembly of a trimolecular FXa-inhibitory complex comprising FV-Short, protein S, and TFPIα.
  •  
7.
  • Happonen, Kaisa E, et al. (författare)
  • The Gas6-Axl Interaction Mediates Endothelial Uptake of Platelet Microparticles
  • 2016
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 291:20, s. 10586-10601
  • Tidskriftsartikel (refereegranskat)abstract
    • Upon activation, platelets release plasma-membrane derived microparticles (PMPs) exposing phosphatidylserine (PS) on their surface. The function and clearance mechanism of these MPs are incompletely understood. As they are pro-coagulant and potentially pro-inflammatory, rapid clearance from the circulation is essential for prevention of thrombotic diseases. The tyrosine kinase receptors Tyro3, Axl and Mer (TAMs) and their ligands protein S and Gas6 are involved in the uptake of PS-exposing apoptotic cells in macrophages and dendritic cells. Both TAMs and their ligands are expressed in the vasculature, the functional significance of which is poorly understood. In this study we investigated how vascular TAMs and their ligands may mediate endothelial uptake of PMPs. PMPs, generated from purified human platelets, were isolated by ultracentrifugation and labeled with biotin or PKH67. The uptake of labeled MPs in the presence of protein S and Gas6 in human aortic endothelial cells (HAEC) and human umbilical vein endothelial cells (HUVEC) was monitored by flow cytometry, western blotting and confocal/electron microscopy. We found that both endothelial cell types can phagocytose PMPs, and using TAM-blocking antibodies or siRNA knock-down of individual TAMs we show that the uptake is mediated by endothelial Axl and Gas6. As circulating PMPs-levels were not altered in Gas6-/- mice compared to Gas6+/+ mice, we hypothesize that the Gas6-mediated uptake is not a means to clear the bulk of circulating PMPs but may serve to phagocytose PMPs locally generated at sites of platelet activation and as a way to affect endothelial responses.
  •  
8.
  •  
9.
  •  
10.
  • Norström, Eva, et al. (författare)
  • Effects of factor Xa and protein S on the individual activated protein C-mediated cleavages of coagulation factor Va.
  • 2006
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 281:42, s. 31486-31494
  • Tidskriftsartikel (refereegranskat)abstract
    • Activated protein C inhibits the procoagulant function of activated factor V (FVa) through proteolytic cleavages at Arg-306, Arg-506, and Arg-679. The cleavage at Arg-506 is kinetically favored but protected by factor Xa (FXa). Protein S has been suggested to annihilate the inhibitory effect of FXa, a proposal that has been challenged. To elucidate the effects of FXa and protein S on the individual cleavage sites of FVa, we used recombinant FVa:Q306/Q679 and FVa: Q506/Q679 variants, which can only be cleaved at Arg-506 and Arg-306, respectively. In the presence of active site blocked FXa (FXa-1.5-dansyl-GluGly-Arg), the FVa inactivation was followed over time, and apparent second order rate constants were calculated. Consistent with results on record, we observed that FXa-1.5-dansylGlu-Gly- Arg decreased the Arg-506 cleavage by 20-fold, with a half-maximum inhibition of similar to 2 nM. Interestingly and in contrast to the inhibitory effect of FXa on the 506 cleavage, FXa stimulated the Arg-306 cleavage. Protein S counteracted the inhibition by FXa of the Arg-506 cleavage, whereas protein S and FXa yielded additive stimulatory effect of the cleavage at Arg-306. This suggests that FXa and protein S interact with distinct sites on FVa, which is consistent with the observed lack of inhibitory effect on FXa binding to FVa by protein S. We propose that the apparent annihilation of the FXa protection of the Arg-506 cleavage by protein S is due to an enhanced rate of Arg-506 cleavage of FVa not bound to FXa, resulting in depletion of free FVa and dissociation of FXa-FVa complexes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy