SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tranvik L. J.) "

Sökning: WFRF:(Tranvik L. J.)

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Hansson, L. A., et al. (författare)
  • Variation in physical, chemical and biological components in the subantarctic lakes of South Georgia
  • 1996
  • Ingår i: Ecography. - : Wiley. - 0906-7590. ; 19:4, s. 393-403
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical, chemical and biological variables were quantified in 19 subantarctic lakes (South Georgia) as a prelude to comparing these pristine systems with temperate lakes and to improve the knowledge of spatial and temporal variation in water chemistry and abundances of organisms. Lakes close to the sea had higher phosphorus concentrations, contained higher abundances of most organisms, and had higher number of invertebrate species than lakes situated further from the sea. Differences were attributed to higher nutrient input from marine organisms, such as penguins, seals and petrels, and probably also to a somewhat longer ice-free period. Since the lakes of South Georgia lack fish, the pelagic invertebrate fauna is dominated by herbivorous macrozooplankton. Rotifers are rare in the open water and are restricted to the vegetation (mainly mosses) in shallow areas and to the sediment surface. Generally, the algal abundance at the sediment surface is high in subantarctic lakes, indicating that the main part of the primary production is provided by benthic algae, which is in contrast to what is normally the case in temperate waters.
  •  
3.
  •  
4.
  •  
5.
  • Tranvik, Lars J., et al. (författare)
  • Lakes and reservoirs as regulators of carbon cycling and climate
  • 2009
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 54:6:2, s. 2298-2314
  • Forskningsöversikt (refereegranskat)abstract
    • We explore the role of lakes in carbon cycling and global climate, examine the mechanisms influencing carbon pools and transformations in lakes, and discuss how the metabolism of carbon in the inland waters is likely to change in response to climate. Furthermore, we project changes as global climate change in the abundance and spatial distribution of lakes in the biosphere, and we revise the estimate for the global extent of carbon transformation in inland waters. This synthesis demonstrates that the global annual emissions of carbon dioxide from inland waters to the atmosphere are similar in magnitude to the carbon dioxide uptake by the oceans and that the global burial of organic carbon in inland water sediments exceeds organic carbon sequestration on the ocean floor. The role of inland waters in global carbon cycling and climate forcing may be changed by human activities, including construction of impoundments, which accumulate large amounts of carbon in sediments and emit large amounts of methane to the atmosphere. Methane emissions are also expected from lakes on melting permafrost. The synthesis presented here indicates that (1) inland waters constitute a significant component of the global carbon cycle, (2) their contribution to this cycle has significantly changed as a result of human activities, and (3) they will continue to change in response to future climate change causing decreased as well as increased abundance of lakes as well as increases in the number of aquatic impoundments.
  •  
6.
  • Barros, Nathan, et al. (författare)
  • Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude
  • 2011
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 4:9, s. 593-596
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydroelectric reservoirs cover an area of 3.4 x 10(5) km(2) and comprise about 20% of all reservoirs. In addition, they contain large stores of formerly terrestrial organic carbon. Significant amounts of greenhouse gases are emitted(2), especially in the early years following reservoir creation, but the global extent of these emissions is poorly known. Previous estimates of emissions from all types of reservoir indicate that these human-made systems emit 321 Tg of carbon per year (ref. 4). Here we assess the emissions of carbon dioxide and methane from hydroelectric reservoirs, on the basis of data from 85 globally distributed hydroelectric reservoirs that account for 20% of the global area of these systems. We relate the emissions to reservoir age, location biome, morphometric features and chemical status. We estimate that hydroelectric reservoirs emit about 48 Tg C as CO(2) and 3 Tg C as CH(4), corresponding to 4% of global carbon emissions from inland waters. Our estimates are smaller than previous estimates on the basis of more limited data. Carbon emissions are correlated to reservoir age and latitude, with the highest emission rates from the tropical Amazon region. We conclude that future emissions will be highly dependent on the geographic location of new hydroelectric reservoirs.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Matrai, P.A., et al. (författare)
  • Are high Arctic surface microlayers a potential source of aerosol organic precursors?
  • 2008
  • Ingår i: Marine Chemistry. - : Elsevier BV. - 0304-4203 .- 1872-7581. ; 108:1-2, s. 109-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Particulate organic matter, including microorganisms, small water-insoluble particles and microaggregates, can form a substantial part of the summer aerosol over the open leads of the central Arctic Ocean. The increased presence of leads during the summer melt increases the biological activity of the region possibly resulting in accumulation of organic material, especially in the surface microlayer. Preferential microlayer enrichment of particulate and dissolved organic matter and gases might be reflected in derived aerosols. The subsurface seawater and microlayer concentrations were determined for dimethyl sulfide (DMS) and its biogenic precursor dimethylsulfoniopropionate (DMSP), dissolved combined amino acids (DCAA) and individual aminoacids, proteins, chlorophyll a (chl a) and bacterial cells as well as bacterial production. Enrichment factors and surface excess concentrations in the surface microlayer were calculated. Concentrations of particulate and dissolved DMSP, chl a-containing material, and bacterial cells were consistently enriched in arctic lead microlayers at 89°N in August 2001. DMS, protein and DCAA concentrations, however, were not in excess in surface microlayers, although proteins were occasionally enriched. The average mole % DCAA composition was similar in subsurface and microlayer water. Enrichment spikes and excess concentrations followed freezing events and did not co-occur with enhanced bacterial production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34
Typ av publikation
tidskriftsartikel (29)
bokkapitel (3)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (30)
populärvet., debatt m.m. (4)
Författare/redaktör
Jansson, M. (2)
Nilsson, A (1)
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
visa fler...
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Gough, Laura (1)
visa färre...
Lärosäte
Uppsala universitet (25)
Lunds universitet (7)
Umeå universitet (5)
Stockholms universitet (5)
Sveriges Lantbruksuniversitet (5)
Göteborgs universitet (2)
visa fler...
Linköpings universitet (2)
Mittuniversitetet (2)
Linnéuniversitetet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (33)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Lantbruksvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy