SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trebbin Martin) "

Sökning: WFRF:(Trebbin Martin)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wiedorn, Max O., et al. (författare)
  • Megahertz serial crystallography
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a beta-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
  •  
2.
  • Yefanov, Oleksandr, et al. (författare)
  • Evaluation of serial crystallographic structure determination within megahertz pulse trains
  • 2019
  • Ingår i: Structural Dynamics. - : AMER INST PHYSICS. - 2329-7778. ; 6:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL.
  •  
3.
  • With, Sebastian, et al. (författare)
  • Fast Diffusion-Limited Lyotropic Phase Transitions Studied in-situ Using Continuous Flow Microfluidics / Microfocus-SAXS
  • 2014
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 30:42, s. 12494-12502
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast concentration-induced diffusion-limited lyotropic phase transitions can be studied in situ with millisecond time resolution using continuous flow microfluidics in combination with microfocus small-angle X-ray scattering. The method was applied to follow a classical self-assembly sequence where amphiphiles assemble into micelles, which subsequently assemble into an ordered lattice via a disorder/order transition. As a model system we selected the self-assembly of an amphiphilic block copolymer induced by the addition of a nonsolvent. Using microchannel hydrodynamic flow-focusing, large concentration gradients can be generated, leading to a deep quench from the miscible to the microphase-separated state. Within milliseconds the block copolymers assembly via a spinodal microphase separation into micelles, followed by a disorder/order transition into an FCC liquid-crystalline phase with late-stage domain growth and shear-induced domain orientation into a mesocrystal. A comparison with a slow macroscopic near-equilibrium kinetic experiment shows that the fast structural transitions follow a direct pathway to the equilibrium structure without the trapping of metastable states.
  •  
4.
  • Sobolev, Egor, et al. (författare)
  • Megahertz single-particle imaging at the European XFEL
  • 2020
  • Ingår i: Communications Physics. - : Springer Science and Business Media LLC. - 2399-3650. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL is expected to provide 27,000 pulses per second, over two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The results obtained pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy