SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Triantafyllidis Kostas) "

Sökning: WFRF:(Triantafyllidis Kostas)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nitsos, Christos, et al. (författare)
  • Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation
  • 2015
  • Ingår i: BioMed Research International. - : Hindawi Limited. - 2314-6133 .- 2314-6141. ; 2015
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.
  •  
2.
  • Nitsos, Christos, et al. (författare)
  • Investigation of different pretreatment methods of Mediterranean-type ecosystem agricultural residues : characterisation of pretreatment products, high-solids enzymatic hydrolysis and bioethanol production
  • 2018
  • Ingår i: Biofuels. - : Taylor & Francis. - 1759-7269 .- 1759-7277. ; 9:5, s. 545-558
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural and agro-industrial lignocellulosic residues represent an important renewable resource for the production of fuels and chemicals towards a bio-based economy. Olive pruning, vineyard pruning and almond shells are important residues from agricultural activities in Mediterranean-type ecosystems. In the current work, bioethanol production from the above three types of agro-residues was studied, focusing on the effect of different pretreatment methods on enzymatic saccharrification efficiency of cellulose and production of second-generation bioethanol. Dilute acid, hydrothermal and steam explosion pretreatments were compared in order to remove hemicellulose and facilitate the subsequent enzymatic hydrolysis of the hemicellulose-deficient biomass to glucose. Enzymatic hydrolysis was performed in a free-fall mixing reactor enabling high solids loading of 23% w/w. This allowed hydrolysis of up to 67% of available cellulose in almond shells and close to 50% in olive pruning samples, and facilitated high ethanol production in the subsequent fermentation step; the highest ethanol concentrations achieved were 47.8 g/L for almond shells after steam explosion and 42 g/L for hydrothermally pretreated olive pruning residue.
  •  
3.
  • Nitsos, Christos, et al. (författare)
  • Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process
  • 2013
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 6:1, s. 110-122
  • Tidskriftsartikel (refereegranskat)abstract
    • The natural resistance to enzymatic deconstruction exhibited by lignocellulosic materials has designated pretreatment as a key step in the biological conversion of biomass to ethanol. Hydrothermal pretreatment in pure water represents a challenging approach because it is a method with low operational costs and does not involve the use of organic solvents, difficult to handle chemicals, and "external" liquid or solid catalysts. In the present work, a systematic study has been performed to optimize the hydrothermal treatment of lignocellulosic biomass (beech wood) with the aim of maximizing the enzymatic digestibility of cellulose in the treated solids and obtaining a liquid side product that could also be utilized for the production of ethanol or valuable chemicals. Hydrothermal treatment experiments were conducted in a batch-mode, high-pressure reactor under autogeneous pressure at varying temperature (130-220 °C) and time (15-180 min) regimes, and at a liquid-to-solid ratio (LSR) of 15. The intensification of the process was expressed by the severity factor, log Ro. The major changes induced in the solid biomass were the dissolution/removal of hemicellulose to the process liquid and the partial removal and relocation of lignin on the external surface of biomass particles in the form of recondensed droplets. The above structural changes led to a 2.5-fold increase in surface area and total pore volume of the pretreated biomass solids. The enzymatic hydrolysis of cellulose to glucose increased from less than 7 wt % for the parent biomass to as high as 70 wt % for the treated solids. Maximum xylan recovery (60 wt %) in the hydrothermal process liquid was observed at about 80 wt % hemicellulose removal; this was accomplished by moderate treatment severities (log R o=3.8-4.1). At higher severities (log Ro=4.7), xylose degradation products, mainly furfural and formic acid, were the predominant chemicals formed. Green fuels and chemicals: The enzymatic digestibility of cellulose in lignocellulosic biomass towards fermentable glucose can be increased significantly by hydrothermal pretreatment in pure water under relatively mild conditions. Appropriate selection of the pretreatment temperature and time also leads to a process liquid that can be enriched in xylose or in furfural and acetic acid
  •  
4.
  • Nitsos, Christos, et al. (författare)
  • The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals
  • 2013
  • Ingår i: The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals. - : Elsevier. - 9780444563309 ; , s. 217-260
  • Bokkapitel (refereegranskat)abstract
    • The enzymatic hydrolysis of cellulose toward fermentable glucose is of paramount importance for the production of ethanol or other high-value chemicals from lignocellulosic biomass via the biochemical route. A pretreatment step is usually required that alters the structure and composition of biomass, reduces its recalcitrance, and allows the efficient enzymatic conversion of carbohydrates into sugars. Biomass pretreatment aims mainly at the selective separation of hemicellulose and/or lignin, either as oligomers or as smaller sugar and phenolic molecules, which can be further converted enzymatically or via chemical catalysis to platform chemicals or fuel precursors. In this chapter, a review of the most widely applied pretreatment methods is presented, with the aim of elucidating the role of chemical or biochemical catalysis in this first step of biomass valorization
  •  
5.
  • Stephanidis, S.D., et al. (författare)
  • Catalytic upgrading of lignocellulosic biomass pyrolysis vapours : Effect of hydrothermal pre-treatment of biomass
  • 2011
  • Ingår i: Catalysis Today. - : Elsevier BV. - 0920-5861 .- 1873-4308. ; 167:1, s. 37-45
  • Tidskriftsartikel (refereegranskat)abstract
    • The main objective of the present work was the study of the effect of hydrothermal pretreatment of lignocellulosic biomass (beech wood) on the product yields and bio-oil composition produced from biomass flash pyrolysis as well as from the catalytic upgrading of the biomass pyrolysis vapours. The hydrothermal pretreatment of lignocellulosic biomass was performed at a severity factor (Ro) of 3.55 leading to ∼35 wt.% loss of solids, mainly due to solubilization and removal of hemicellulose. The production of sugars (mainly levoglucosan) was significantly increased by the use of the hydrothermally pretreated biomass instead of the untreated biomass in the non-catalytic flash pyrolysis experiments. On the other hand, the concentration of carboxylic acids, ketones and phenols was decreased in the bio-oil derived from the pretreated biomass. The catalysts tested in the upgrading of the biomass pyrolysis vapours were the strongly acidic zeolites H-ZSM-5 and silicalite (with very low number of acid sites) and the mildly acidic mesoporous aluminosilicate Al-MCM-41. The effect of catalysts on product yields and composition of bio-oil in the upgrading of pyrolysis vapours, was similar for both the pretreated and untreated biomass. The use of zeolite H-ZSM-5 decreased the total liquid yield (bio-oil) via decreasing the organic phase of bio-oil and increasing its water content, accompanied by increase of gases and moderate formation of coke on the catalyst. The zeolite silicalite and the Al-MCM-41 induced similar effects with those of H-ZSM-5 but to a less extent, except of the significantly higher coke that was deposited on Al-MCM-41. With regard to the composition of the bio-oil, all the catalysts and mostly the strongly acidic H-ZSM-5 zeolite reduced the oxygen content of the organic fraction, mainly by decreasing the concentration of acids, ketones and phenols in the untreated biomass pyrolysis oil or the concentration of sugars in the pretreated biomass pyrolysis oil. Aromatics and polycyclic aromatic hydrocarbons (PAHs) were significantly increased by the use of all catalysts, for both types of biomass feed. A substantial increase in the concentration of phenols was observed in the upgraded bio-oil derived by the hydrothermally pretreated biomass, using the less acidic silicalite and Al-MCM-41 catalysts
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy