SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tronci Elisabetta) "

Sökning: WFRF:(Tronci Elisabetta)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bastide, Matthieu F, et al. (författare)
  • Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease.
  • 2015
  • Ingår i: Progress in Neurobiology. - : Elsevier BV. - 1873-5118 .- 0301-0082. ; 132:Jul 21, s. 96-168
  • Forskningsöversikt (refereegranskat)abstract
    • Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
  •  
2.
  • Bezard, Erwan, et al. (författare)
  • Anti-dyskinetic effect of anpirtoline in animal models of L-DOPA-induced dyskinesia
  • 2013
  • Ingår i: Neuroscience Research. - : Elsevier BV. - 0168-0102. ; 77:4, s. 242-246
  • Tidskriftsartikel (refereegranskat)abstract
    • The serotonin system has emerged as a potential target for anti-dyskinetic therapy in Parkinson's disease. In fact, serotonin neurons can convert L-DOPA into dopamine, and mediate its synaptic release. However, they lack a feedback control mechanism able to regulate synaptic dopamine levels, which leads to un-physiological stimulation of post-synaptic striatal dopamine receptors. Accordingly, drugs able to dampen the activity of serotonin neurons can suppress L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Here, we investigated the ability of the 5-HT1A/1B receptor agonist anpirtoline to counteract LDOPA-induced dyskinesia in L-DOPA-primed 6-OHDA-lesioned rats and MPTP-treated macaques. Results suggest that anpirtoline dose-dependently reduced dyskinesia both in rats and monkeys; however, the effect in MPTP-treated macaques was accompanied by a worsening of the Parkinson's disease score at significantly effective doses (1.5 and 2.0 mg/kg). At a lower dose (0.75 mg/ kg), anpirtoline markedly reduced dyskinesia in 4 out of 5 subjects, but statistical significance was prevented by the presence of a non-responsive subject. These results provide further evidence that the serotonin neurons contribute both to the pro-dyskinetic effect of L-DOPA and to its therapeutic efficacy in the rat and monkey models of Parkinson's disease. (c) 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
  •  
3.
  • Bezard, Erwan, et al. (författare)
  • Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia
  • 2013
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185. ; 28:8, s. 1088-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • The serotonin (5-hydroxytryptamine [5HT]) system has recently emerged as an important player in the appearance of l-3,4-dihydroxyphenylalanine (levodopa [l-dopa])-induced dyskinesia in animal models of Parkinson's disease. In fact, dopamine released as a false transmitter from serotonin neurons appears to contribute to the pulsatile stimulation of dopamine receptors, leading to the appearance of the abnormal involuntary movements. Thus, drugs able to dampen the activity of serotonin neurons hold promise for the treatment of dyskinesia. The authors investigated the ability of the mixed 5-HT 1A/1B receptor agonist eltoprazine to counteract l-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned rats and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaques. The data demonstrated that eltoprazine is extremely effective in suppressing dyskinesia in experimental models, although this effect was accompanied by a partial worsening of the therapeutic effect of l-dopa. Interestingly, eltoprazine was found to (synergistically) potentiate the antidyskinetic effect of amantadine. The current data indicated that eltoprazine is highly effective in counteracting dyskinesia in preclinical models. However, the partial worsening of the l-dopa effect observed after eltoprazine administration represents a concern; whether this side effect is due to a limitation of the animal models or to an intrinsic property of eltoprazine needs to be addressed in ongoing clinical trials. The data also suggest that the combination of low doses of eltoprazine with amantadine may represent a valid strategy to increase the antidyskinetic effect and reduce the eltoprazine-induced worsening of l-dopa therapeutic effects. (c) 2013 Movement Disorder Society
  •  
4.
  • Munoz, Ana, et al. (författare)
  • Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT(1A) and 5-HT(1B) receptor agonists in the rat Parkinson model.
  • 2009
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 219:1, s. 298-307
  • Tidskriftsartikel (refereegranskat)abstract
    • 5-HT(1) receptor agonists have been shown to reduce abnormal involuntary movements (AIMs) in the rat and monkey models of l-DOPA-induced dyskinesia. Different mechanisms have been proposed to underlie this effect. Activation of pre-synaptic 5-HT(1) receptors has been suggested to inhibit dysregulated release of dopamine from the serotonin terminals, and thus, abnormal activation of striatal dopamine receptors. Activation of post-synaptic 5-HT(1) receptors expressed in non-serotonergic neurons in different brain areas, by contrast, has been shown to result in decreased glutamate and GABA release, which may also contribute to the antidyskinetic effect. To unveil the relative contribution of these mechanisms, we have investigated the effect of increasing doses of 5-HT(1A) and 5-HT(1B) receptor agonists on AIMs induced by either l-DOPA or apomorphine. In contrast to l-DOPA-induced AIMs, which were dampened already at low doses of 5-HT(1) agonists, reduction of apomorphine-induced AIMs required higher doses. Removal of the serotonin innervation suppressed l-DOPA-induced AIMs, but neither affected apomorphine-induced AIMs nor the inhibiting effect of 5-HT(1) agonists on AIMs induced by the direct dopamine agonist, suggesting that such effect is independent on activation of pre-synaptic 5-HT(1) receptors.
  •  
5.
  • Scheggi, Simona, et al. (författare)
  • BDNF Overexpression Increases Striatal D3 Receptor Level at Striatal Neurons and Exacerbates D1-Receptor Agonist-Induced Dyskinesia
  • 2020
  • Ingår i: Journal of Parkinson's Disease. - 1877-718X. ; 10:4, s. 1503-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: We recently showed that striatal overexpression of brain derived neurotrophic factor (BDNF) by adeno-associated viral (AAV) vector exacerbated L-DOPA-induced dyskinesia (LID) in 6-OHDA-lesioned rats. An extensive sprouting of striatal serotonergic terminals accompanied this effect, accounting for the increased susceptibility to LID.OBJECTIVE: We set to investigate whether the BDNF effect was restricted to LID, or extended to dyskinesia induced by direct D1 receptor agonists.METHODS: Unilaterally 6-OHDA-lesioned rats received a striatal injection of an AAV vector to induce BDNF overexpression. Eight weeks later, animals received daily treatments with a low dose of SKF82958 (0.02 mg/kg s.c.) and development of dyskinesia was evaluated. At the end of the experiment, D1 and D3 receptors expression levels and D1 receptor-dependent signaling pathways were measured in the striatum.RESULTS: BDNF overexpression induced significant worsening of dyskinesia induced by SKF82958 compared to the GFP group and increased the expression of D3 receptor at striatal level, even in absence of pharmacological treatment; by contrast, D1 receptor levels were not affected. In BDNF-overexpressing striata, SKF82958 administration resulted in increased levels of D1-D3 receptors co-immunoprecipitation and increased phosphorylation levels of Thr34 DARPP-32 and ERK1/2.CONCLUSION: Here we provide evidence for a functional link between BDNF, D3 receptors and D1-D3 receptor close interaction in the augmented susceptibility to dyskinesia in 6-OHDA-lesioned rats. We suggest that D1/D3 receptors interaction may be instrumental in driving the molecular alterations underlying the appearance of dyskinesia; its disruption may be a therapeutic strategy for treating dyskinesia in PD patients.
  •  
6.
  • Shin, Eunju, et al. (författare)
  • Role of Serotonin Neurons in L-DOPA- and Graft-Induced Dyskinesia in a Rat Model of Parkinson's Disease.
  • 2012
  • Ingår i: Parkinson's Disease. - : Hindawi Limited. - 2042-0080 .- 2090-8083. ; 2012:Jun 11
  • Forskningsöversikt (refereegranskat)abstract
    • L-DOPA, the most effective drug to treat motor symptoms of Parkinson's disease, causes abnormal involuntary movements, limiting its use in advanced stages of the disease. An increasing body of evidence points to the serotonin system as a key player in the appearance of L-DOPA-induced dyskinesia (LID). In fact, exogenously administered L-DOPA can be taken up by serotonin neurons, converted to dopamine and released as a false transmitter, contributing to pulsatile stimulation of striatal dopamine receptors. Accordingly, destruction of serotonin fibers or silencing serotonin neurons by serotonin agonists could counteract LID in animal models. Recent clinical work has also shown that serotonin neurons are present in the caudate/putamen of patients grafted with embryonic ventral mesencephalic cells, producing intense serotonin hyperinnervation. These patients experience graft-induced dyskinesia (GID), a type of dyskinesia phenotypically similar to the one induced by L-DOPA but independent from its administration. Interestingly, the 5-HT(1A) receptor agonist buspirone has been shown to suppress GID in these patients, suggesting that serotonin neurons might be involved in the etiology of GID as for LID. In this paper we will discuss the experimental and clinical evidence supporting the involvement of the serotonin system in both LID and GID.
  •  
7.
  • Shin, Eunju, et al. (författare)
  • The anti-dyskinetic effect of dopamine receptor blockade is enhanced in parkinsonian rats following dopamine neuron transplantation.
  • 2014
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 62, s. 233-240
  • Tidskriftsartikel (refereegranskat)abstract
    • Graft-induced dyskinesia (GID) is a serious complication induced by dopamine (DA) cell transplantation in parkinsonian patients. We have recently shown that DA D2 receptor blockade produces sticking blockade of dyskinesia induced by amphetamine in grafted 6-OHDA-lesioned rats, a model of GID. This study was designed to investigate whether blockade of DA D1 receptors could produce similar outcome, and to see whether the effect of these treatments in grafted rats was specific for dyskinesia induced by amphetamine, or could also influence L-DOPA-induced dyskinesia (LID). L-DOPA-primed rats received transplants of fetal DA neurons into the DA-denervated striatum. Beginning at 20weeks after transplantation rats were subjected to pharmacological treatments with either L-DOPA (6mg/kg) or amphetamine (1.5mg/kg) alone, or in combination with the D1 receptor antagonist SCH23390, the D2 receptor antagonist eticlopride, and the 5-HT1A agonist/D2 receptor antagonist buspirone. Grafted rats developed severe GID, while LID was reduced. Both eticlopride and SCH23390 produced near-complete suppression of GID already at very low doses (0.015 and 0.1mg/kg, respectively). Buspirone induced similar suppression at a dose as low as 0.3mg/kg, which is far lower than the dose known to affect LID in non-grafted dyskinetic rats. In agreement with our previous results, the effect of buspirone was independent from 5-HT1A receptor activation, as it was not counteracted by the selective 5-HT1A antagonist WAY100635, but likely due to D2 receptor blockade. Most interestingly, the same doses of eticlopride, SCH23390 and buspirone were found to suppress LID in grafted but not in control dyskinetic rats. Taken together, these data demonstrate that the DA cell grafts strikingly exacerbate the effect of DA D1 and D2 receptor blockade against both GID and LID, and suggest that the anti-GID effect of buspirone seen in patients may also be due to blockade of DA D2 receptors.
  •  
8.
  • Tronci, Elisabetta, et al. (författare)
  • Amphetamine-induced rotation and l-DOPA-induced dyskinesia in the rat 6-OHDA model: A correlation study.
  • 2012
  • Ingår i: Neuroscience Research. - : Elsevier BV. - 0168-0102. ; 73:2, s. 168-172
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study investigated whether the rotation rate induced by amphetamine in 6-OHDA-lesioned rats was predictive of development of l-DOPA-induced dyskinesia (LID) and success of the lesion procedure in our experimental settings. We collected data from 312 6-OHDA-lesioned rats (from different sets of experiments). Rats were subjected to the amphetamine-induced rotation test (2.5mg/kg) and chronically treated with l-DOPA (6mg/kg) to establish dyskinesia. A poor correlation was present between amphetamine-induced rotation and LID. Moreover, no correlation was found between amphetamine-induced rotation and tyrosine hydroxylase (TH) positive cell number in the lesioned substantia nigra pars compacta, while there was a weak correlation between the percentage of TH positive cell number and LID. These results indicate that the amphetamine-induced rotation test is a poor predictor of the 6-OHDA-lesion success, as well as of the development of LID at the dose of amphetamine used here. Our data also suggest that all rats with amphetamine-induced rotation ≥3turns/min should be included in dyskinesia studies, as they showed the same propensity to develop dyskinesia. Moreover, SERT expression levels suggest that reduced striatal and pallidal serotonin innervation might have contributed to the lower dyskinesia levels observed in a subset of amphetamine-responsive rats.
  •  
9.
  • Tronci, Elisabetta, et al. (författare)
  • Animal models of l-DOPA-induced dyskinesia : the 6-OHDA-lesioned rat and mouse
  • 2018
  • Ingår i: Journal of Neural Transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 125:8, s. 1137-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • Appearance of l-DOPA-induced dyskinesia (LID) represents a major limitation in the pharmacological therapy with the dopamine precursor l-DOPA. Indeed, the vast majority of parkinsonian patients develop dyskinesia within 9–10 years of l-DOPA oral administration. This makes the discovery of new therapeutic strategies an important need. In the last decades, several animal models of Parkinson’s disease (PD) have been developed, to both study mechanisms underlying PD pathology and treatment-induced side effects (i.e., LID) and to screen for new potential anti-parkinsonian and anti-dyskinetic treatments. Among all the models developed, the 6-OHDA-lesioned rodents represent the models of choice to mimic PD motor symptoms and LID, thanks to their reproducibility and translational value. Under l-DOPA treatment, rodents sustaining 6-OHDA lesions develop abnormal involuntary movements with dystonic and hyperkinetic features, resembling what seen in dyskinetic PD patients. These models have been extensively validated by the evidence that dyskinetic behaviors are alleviated by compounds reducing dyskinesia in patients and non-human primate models of PD. This article will focus on the translational value of the 6-OHDA rodent models of LID, highlighting their main features, advantages and disadvantages in preclinical research.
  •  
10.
  • Tronci, Elisabetta, et al. (författare)
  • BDNF over-expression induces striatal serotonin fiber sprouting and increases the susceptibility to L-DOPA-induced dyskinesia in 6-OHDA-lesioned rats
  • 2017
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 297, s. 73-81
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to its role in neuronal survival, the brain neurotrophic factor (BDNF) has been shown to influence serotonin transmission and synaptic plasticity, events strongly implicated in the appearance of L-DOPA-induced dyskinesia (LID), a motor complication occurring in parkinsonian patients after long-term treatment with the dopamine precursor. In order to evaluate a possible influence of BDNF in the appearance of LID, 6-OHDA-lesioned rats received a striatal injection of different concentrations of an adeno-associated viral (AAV) vector over-expressing either BDNF or GFP, as control vector. Eight weeks later, animals started to receive a daily treatment with L-DOPA (4–6 mg/kg plus benserazide 4–6 mg/kg, s.c.) or saline, and dyskinesias, as well as L-DOPA-induced rotations, were evaluated at several time-points. Moreover, molecular changes in striatal D1 receptor-dependent cAMP/PKA and ERK/mTORC signaling pathways, as well as, sprouting of striatal serotonin axons, were measured. Results showed that the AAV-BDNF vector injection induced striatal over-expression of BDNF, as well as striatal and pallidal serotonin axon hyperinnervation. Moreover, rats that over-expressed BDNF were more prone to develop LID and L-DOPA-induced rotations, compared to the GFP-treated control group. Finally, rats that over-expressed BDNF showed increased levels of striatal D1R-dependent signaling phospho-proteins in response to L-DOPA administration. This study suggests that BDNF over-expression, by inducing changes in pre-synaptic serotonin axonal trophism, is able to exacerbate maladaptive responses to L-DOPA administration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy