SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trondman Anna Kari) "

Sökning: WFRF:(Trondman Anna Kari)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gaillard, Marie-José, et al. (författare)
  • Causes of Regional Change : Land Cover
  • 2015
  • Ingår i: Second Assessment of Climate Change for the Baltic Sea Basin. - Cham : Springer. - 9783319160054 - 9783319160061 ; , s. 453-477
  • Bokkapitel (refereegranskat)abstract
    • Anthropogenic land-cover change (ALCC) is one of the few climate forcings for which the net direction of the climate response over the last two centuries is still not known. The uncertainty is due to the often counteracting temperature responses to the many biogeophysical effects and to the biogeochemical versus biogeophysical effects. Palaeoecological studies show that the major transformation of the landscape by anthropogenic activities in the southern zone of the Baltic Sea basin occurred between 6000 and 3000/2500 cal year BP. The only modelling study of the biogeophysical effects of past ALCCs on regional climate in north-western Europe suggests that deforestation between 6000 and 200 cal year BP may have caused significant change in winter and summer temperature. There is no indication that deforestation in the Baltic Sea area since AD 1850 would have been a major cause of the recent climate warming in the region through a positive biogeochemical feedback. Several model studies suggest that boreal reforestation might not be an effective climate warming mitigation tool as it might lead to increased warming through biogeophysical processes.
  •  
2.
  • Gaillard, Marie-José, 1953-, et al. (författare)
  • Holocene land-cover reconstructions for studies on land cover-climate feedbacks
  • 2010
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 6, s. 483-499
  • Tidskriftsartikel (refereegranskat)abstract
    • The major objectives of this paper are: (1) to review the pros and cons of the scenarios of past anthropogenic land cover change (ALCC) developed during the last ten years, (2) to discuss issues related to pollen-based reconstruction of the past land-cover and introduce a new method, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites), to infer long-term records of past land-cover from pollen data, (3) to present a new project (LANDCLIM: LAND cover – CLIMate interactions in NW Europe during the Holocene) currently underway, and show preliminary results of REVEALS reconstructions of the regional land-cover in the Czech Republic for five selected time windows of the Holocene, and (4) to discuss the implications and future directions in climate and vegetation/land-cover modeling, and in the assessment of the effects of human-induced changes in land-cover on the regional climate through altered feedbacks. The existing ALCC scenarios show large discrepancies between them, and few cover time periods older than AD 800. When these scenarios are used to assess the impact of human land-use on climate, contrasting results are obtained. It emphasizes the need for methods such as the REVEALS model-based land-cover reconstructions. They might help to fine-tune descriptions of past land-cover and lead to a better understanding of how long-term changes in ALCC might have influenced climate. The REVEALS model is demonstrated to provide better estimates of the regional vegetation/landcover changes than the traditional use of pollen percentages. This will achieve a robust assessment of land cover at regional- to continental-spatial scale throughout the Holocene. We present maps of REVEALS estimates for the percentage cover of 10 plant functional types (PFTs) at 200 BP and 6000 BP, and of the two open-land PFTs “grassland” and “agricultural land” at five time-windows from 6000 BP to recent time. The LANDCLIM results are expected to provide crucial data to reassess ALCC estimates for a better understanding of the land suface-atmosphere interactions.
  •  
3.
  • Marquer, Laurent, et al. (författare)
  • Quantifying the effects of land use and climate on Holocene vegetation in Europe
  • 2017
  • Ingår i: Quaternary Science Reviews. - : Pergamon Press. - 0277-3791 .- 1873-457X. ; 171, s. 20-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
4.
  •  
5.
  • Mazier, F., et al. (författare)
  • Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database
  • 2012
  • Ingår i: Review of Palaeobotany and Palynology. - : Elsevier BV. - 0034-6667 .- 1879-0615. ; 187, s. 38-49
  • Tidskriftsartikel (refereegranskat)abstract
    • REVEALS-based quantitative reconstruction of Holocene vegetation cover (expressed in plant functional types. PFTs) is used in the LANDCLIM project to assess the effect of human-induced land-cover change on past climate in NW Europe. Using the Czech Quaternary Pollen Database, this case study evaluates the extent to which selection of data and input parameters for the REVEALS model applications would affect reconstruction outcomes. The REVEALS estimates of PFTs (grid-cell based REVEALS PET estimates, GB REVEALS PFT-s) are calculated for five time windows of the Holocene using fossil pollen records available in each 1 degrees x1 degrees grid cell of the Czech Republic. The input data and parameters selected for testing are: basin type and size, number of C-14 dates used to establish the chronology of the pollen records, number of taxa, and pollen productivity estimates (PPE). We used the Spearman correlation coefficient to test the hypothesis that there is no association between GB REVEALS PET-s using different data and parameter inputs. The results show that differences in the basin size and type, number of dates, number and type of taxa (entomophilous included or not), and PPE dataset do not affect the rank orders of the GB REVEALS PET-s significantly, except for the cases when entomophilous taxa are included. It implies that, given careful selection of data and parameter and interpretation of results, REVEALS applications can use pollen records from lakes and bogs of different sizes together for reconstruction of past land cover at the regional to sub-continental spatial scales for purposes such as the study of past land cover-climate interactions. Our study also provides useful criteria to set up protocols for data compilation REVEALS applications of this kind. (C) 2012 Elsevier B.V. All rights reserved.
  •  
6.
  • O’Dwyer, Robert, et al. (författare)
  • Spatially Continuous Land-Cover Reconstructions Through the Holocene in Southern Sweden
  • 2021
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 24:6, s. 1450-1467
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and human activities influence the development of ecosystems, with human demand of ecosystem services altering both land use and land cover. Fossil pollen records provide time series of vegetation characteristics, and the aim of this study was to create spatially continuous reconstructions of land cover through the Holocene in southern Sweden. The Landscape Reconstruction Algorithm (LRA) was applied to obtain quantitative reconstructions of pollen-based vegetation cover at local scales, accounting for pollen production, dispersal, and deposition mechanisms. Pollen-based local vegetation estimates were produced from 41 fossil pollen records available for the region. A comparison of 17 interpolation methods was made and evaluated by comparing with current land cover. Simple kriging with cokriging using elevation was selected to interpolate the local characteristics of past land cover, to generate more detailed reconstructions of trends and degree of variability in time and space than previous studies based on pollen data representing the regional scale. Since the Mesolithic, two main processes have acted to reshape the land cover of southern Sweden, originally mostly covered by broad-leaved forests. The natural distribution limit of coniferous forest has moved southward during periods with colder climate and retracted northward during warmer periods, and human expansion in the area and agrotechnological developments has led to a gradually more open landscape, reaching maximum openness at the beginning of the 20th century. The recent intensification of agriculture has led to abandonment of less fertile agricultural fields and afforestation with conifer forest.
  •  
7.
  •  
8.
  • Trondman, Anna-Kari, et al. (författare)
  • Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:2, s. 676-697
  • Tidskriftsartikel (refereegranskat)abstract
    • We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
  •  
9.
  • Gaillard, Marie-José, et al. (författare)
  • From land cover-climate relationships at the subcontinental scale to land cover-environment relationships at the regional and local spatial scale – the contribution of pollen-based quantitative reconstructions of vegetation cover using the Landscape Reconstruction Algorithm approach
  • 2014
  • Ingår i: Towards a more accurate quantification of human-environment interactions in the past. ; , s. 25-26
  • Konferensbidrag (refereegranskat)abstract
    • The Landscape Reconstruction Algorithm (Sugita 2007a,b) includes two models, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) that estimates vegetation abundance (% cover) within an area of ca. 100 km x 100 km, and LOVE (LOcal Vegetation Estimates) that estimates vegetation abundance at the local spatial scale, i.e. within the Relevant Source Area of Pollen (RSAP sensu Sugita, 2004) that is the smallest area around the study site for which the reconstruction is valid. The RSAP is estimated by the LOVE model and varies between sites and vegetation settings; so far, it was estimated to vary between < 1 - < 10 km in most ecological settings of the Holocene in NW Europe. We used the REVEALS model and over 600 pollen records from pollen data bases and individual researchers to reconstruct land-cover in NW Europe N of the Alps for key time windows of the Holocene in order to assess model-based reconstructions of anthropogenic land-cover change (ALCC) (e.g. Kaplan et al., 2009) and model (LPJ-GUESS) simulations of past potential (climate-induced vegetation), and to study past land cover – climate interactions using a regional climate model (RCA3). We used the REVEALS model and the complete LRA approach (REVEALS + LOVE models) along with two pollen records from large lakes and three pollen records from small bogs to reconstruct the local-scale land-cover in central Småland, southern Sweden, to study the relationship between vegetation composition, fire, climate and human impact at the regional and local spatial scales with the objective to discuss biodiversity issues. Our results suggest that i) past subcontinental to regional ALCC did influence regional climate through biogeophysical processes at the landatmosphere interface (Strandberg et al., submitted), and ii) local land-cover change, both natural and anthropogenic, govern environmental changes such as fire and biodiversity (Cui et al., 2013; Cui et al., submitted).
  •  
10.
  • Gaillard, Marie-José, et al. (författare)
  • Has anthropogenic land-cover change been a significant climate forcing in the past? : An assessment for the Baltic Sea catchment area based on a literature review
  • 2015
  • Ingår i: Geophysical Research Abstracts.
  • Konferensbidrag (refereegranskat)abstract
    • We reviewed the recent published scientific literature on land cover-climate interactions at the global and regional spatial scales with the aim to assess whether it is convincingly demonstrated that anthropogenic land-cover change (ALCC) has been (over the last centuries and millennia) a significant climate forcing at the global scale, and more specifically at the scale of the Baltic Sea catchment area. The conclusions from this review are as follows: i) anthropogenic land-cover change (ALCC) is one of the few climate forcings for which the net direction of the climate response in the past is still not known. The uncertainty is due to the often counteracting temperature responses to the many biogeophysical effects, and to the biogeochemical vs biogeophysical effects; ii) there is no indication that deforestation in the Baltic Sea area since AD 1850 would have been a major cause of the recent climate warming in the region through a positive biogeochemical feedback; iii) several model studies suggest that boreal reforestation might not be an effective climate warming mitigation tool as it might lead to increased warming through biogeophysical processes; iv) palaeoecological studies indicate a major transformation of the landscape by anthropogenic activities in the southern zone of the study region occurring between 6000 and 3000/2500 calendar years before present (cal. BP) (1) ; v) the only modelling study so far of the biogeophysical effects of past ALCCs on regional climate in Europe suggests that a deforestation of the magnitude of that reconstructed for the past (between 6000 and 200 cal BP) can produce changes in winter and summer temperatures of +/- 1, the sign of the change depending on the season and the region (2). Thus, if ALCC and their biogeophysical effects did matter in the past, they should matter today and in the future. A still prevailing idea is that planting trees will mitigate climate warming through biogeochemical effects. Therefore, there is still an urgent need to better understand the biogeophysical effects on regional and continental climate of afforestation in the hemiboreal and boreal regions, and their significance in relation to the biogeochemical effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy