SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Truhlar Donald G.) "

Sökning: WFRF:(Truhlar Donald G.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aquilante, Francesco, et al. (författare)
  • Molcas 8 : New capabilities for multiconfigurational quantum chemical calculations across the periodic table
  • 2016
  • Ingår i: Journal of Computational Chemistry. - : Wiley. - 0192-8651 .- 1096-987X. ; 37:5, s. 506-541
  • Tidskriftsartikel (refereegranskat)abstract
    • In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.
  •  
2.
  • Galván, Ignacio Fdez., et al. (författare)
  • OpenMolcas : From Source Code to Insight
  • 2019
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 15:11, s. 5925-5964
  • Tidskriftsartikel (refereegranskat)abstract
    • In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.
  •  
3.
  • Manni, Giovanni Li, et al. (författare)
  • The OpenMolcas Web : A Community-Driven Approach to Advancing Computational Chemistry
  • 2023
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 19:20, s. 6933-6991
  • Tidskriftsartikel (refereegranskat)abstract
    • The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
  •  
4.
  • Bao, Jie J., et al. (författare)
  • Analytic gradients for compressed multistate pair-density functional theory
  • 2022
  • Ingår i: Molecular Physics. - : Taylor & Francis Group. - 0026-8976 .- 1362-3028. ; 120:19-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Photochemical reactions often involve states that are closely coupled due to near degeneracies, for example by proximity to conical intersections. Therefore, a multistate method is used to accurately describe these states; for example, ordinary perturbation theory is replaced by quasidegenerate perturbation theory. Multiconfiguration pair-density functional theory (MC-PDFT) provides an efficient way to approximate the full dynamical correlation energy of strongly correlated systems, and we recently proposed compressed multistate pair-density functional theory (CMS-PDFT) to treat closely coupled states. In the present paper, we report the implementation of analytic gradients for CMS-PDFT in both OpenMolcas and PySCF, and we illustrate the use of these gradients by applying the method to the excited states of formaldehyde and phenol.
  •  
5.
  •  
6.
  • Calio, Paul B., et al. (författare)
  • Minimum-Energy Conical Intersections by Compressed Multistate Pair-Density Functional Theory
  • 2024
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 128:9, s. 1698-1706
  • Tidskriftsartikel (refereegranskat)abstract
    • Compressed multistate pair-density functional theory (CMS-PDFT) is a multistate version of multiconfiguration pair-density functional theory that can capture the correct topology of coupled potential energy surfaces (PESs) around conical intersections. In this work, we develop interstate coupling vectors (ISCs) for CMS-PDFT in the OpenMolcas and PySCF/mrh electronic structure packages. Yet, the main focus of this work is using ISCs to calculate minimum-energy conical intersections (MECIs) by CMS-PDFT. This is performed using the projected constrained optimization method in OpenMolcas, which uses ISCs to restrain the iterations to the conical intersection seam. We optimize the S1/S0 MECIs for ethylene, butadiene, and benzene and show that CMS-PDFT gives smooth PESs in the vicinities of the MECIs. Furthermore, the CMS-PDFT MECIs are in good agreement with the MECI calculated by the more expensive XMS-CASPT2 method.
  •  
7.
  • Sand, Andrew M., et al. (författare)
  • Analytic Gradients for Complete Active Space Pair-Density Functional Theory
  • 2018
  • Ingår i: Journal of Chemical Theory and Computation. - : AMER CHEMICAL SOC. - 1549-9618 .- 1549-9626. ; 14:1, s. 126-138
  • Tidskriftsartikel (refereegranskat)abstract
    • Analytic gradient routines are a desirable feature for quantum mechanical methods, allowing for efficient determination of equilibrium and transition state structures and several other molecular properties. In this work, we present analytical gradients for multiconfiguration pair-density functional theory (MC-PDFT) when used with a state-specific complete active space self-consistent field reference wave function. Our approach constructs a Lagrangian that is variational in all wave function parameters. We find that MC-PDFT locates equilibrium geometries for several small- to medium-sized organic molecules that are similar to those located by complete active space second-order perturbation theory but that are obtained with decreased computational cost.
  •  
8.
  • Scott, Thais R., et al. (författare)
  • Analytic gradients for multiconfiguration pair-density functional theory with density fitting : Development and application to geometry optimization in the ground and excited states
  • 2021
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 154:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Density fitting reduces the computational cost of both energy and gradient calculations by avoiding the computation and manipulation of four-index electron repulsion integrals. With this algorithm, one can efficiently optimize the geometries of large systems with an accurate multireference treatment. Here, we present the derivation of multiconfiguration pair-density functional theory for energies and analytic gradients with density fitting. Six systems are studied, and the results are compared to those obtained with no approximation to the electron repulsion integrals and to the results obtained by complete active space second-order perturbation theory. With the new approach, there is an increase in the speed of computation with a negligible loss in accuracy. Smaller grid sizes have also been used to reduce the computational cost of multiconfiguration pair-density functional theory with little effect on the optimized geometries and gradient values.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy