SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trupke Michael) "

Sökning: WFRF:(Trupke Michael)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Astner, Thomas, et al. (författare)
  • Vanadium in silicon carbide: telecom-ready spin centres with long relaxation lifetimes and hyperfine-resolved optical transitions
  • 2024
  • Ingår i: QUANTUM SCIENCE AND TECHNOLOGY. - : IOP Publishing Ltd. - 2058-9565. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Vanadium in silicon carbide (SiC) is emerging as an important candidate system for quantum technology due to its optical transitions in the telecom wavelength range. However, several key characteristics of this defect family including their spin relaxation lifetime (T1), charge state dynamics, and level structure are not fully understood. In this work, we determine the T1 of an ensemble of vanadium defects, demonstrating that it can be greatly enhanced at low temperature. We observe a large spin contrast exceeding 90% and long spin-relaxation times of up to 25 s at 100 mK, and of order 1 s at 1.3 K. These measurements are complemented by a characterization of the ensemble charge state dynamics. The stable electron spin furthermore enables high-resolution characterization of the systems' hyperfine level structure via two-photon magneto-spectroscopy. The acquired insights point towards high-performance spin-photon interfaces based on vanadium in SiC.
  •  
2.
  • Cilibrizzi, Pasquale, et al. (författare)
  • Ultra-narrow inhomogeneous spectral distribution of telecom-wavelength vanadium centres in isotopically-enriched silicon carbide
  • 2023
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-active quantum emitters have emerged as a leading platform for quantum technologies. However, one of their major limitations is the large spread in optical emission frequencies, which typically extends over tens of GHz. Here, we investigate single V4+ vanadium centres in 4H-SiC, which feature telecom-wavelength emission and a coherent S = 1/2 spin state. We perform spectroscopy on single emitters and report the observation of spin-dependent optical transitions, a key requirement for spin-photon interfaces. By engineering the isotopic composition of the SiC matrix, we reduce the inhomogeneous spectral distribution of different emitters down to 100 MHz, significantly smaller than any other single quantum emitter. Additionally, we tailor the dopant concentration to stabilise the telecom-wavelength V4+ charge state, thereby extending its lifetime by at least two orders of magnitude. These results bolster the prospects for single V emitters in SiC as material nodes in scalable telecom quantum networks. Several solid-state defect platforms have been proposed for application as a spin-photon interface in quantum communication networks. Here the authors report spin-selective optical transitions and narrow inhomogeneous spectral distribution of V centers in isotopically-enriched SiC emitting in the telecom O-band.
  •  
3.
  • Gulka, Michal, et al. (författare)
  • Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins
  • 2021
  • Ingår i: Nature Communications. - : NATURE RESEARCH. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Nuclear spins in semiconductors are leading candidates for future quantum technologies, including quantum computation, communication, and sensing. Nuclear spins in diamond are particularly attractive due to their long coherence time. With the nitrogen-vacancy (NV) centre, such nuclear qubits benefit from an auxiliary electronic qubit, which, at cryogenic temperatures, enables probabilistic entanglement mediated optically by photonic links. Here, we demonstrate a concept of a microelectronic quantum device at ambient conditions using diamond as wide bandgap semiconductor. The basic quantum processor unit - a single N-14 nuclear spin coupled to the NV electron - is read photoelectrically and thus operates in a manner compatible with nanoscale electronics. The underlying theory provides the key ingredients for photoelectric quantum gate operations and readout of nuclear qubit registers. This demonstration is, therefore, a step towards diamond quantum devices with a readout area limited by inter-electrode distance rather than by the diffraction limit. Such scalability could enable the development of electronic quantum processors based on the dipolar interaction of spin-qubits placed at nanoscopic proximity. Nuclear spins in diamond are promising for applications in quantum technologies due to their long coherence times. Here, the authors demonstrate a scalable electrical readout of individual intrinsic N-14 nuclear spins in diamond, mediated by hyperfine coupling to electron spin of the NV center, as a step towards room-temperature nanoscale diamond quantum devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy