SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tsao SW) "

Sökning: WFRF:(Tsao SW)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Gisselsson Nord, David, et al. (författare)
  • Telomere-mediated mitotic disturbances in immortalized ovarian epithelial cells reproduce chromosomal losses and breakpoints from ovarian carcinoma
  • 2005
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 42:1, s. 22-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Ovarian carcinomas (OCs) often exhibit highly complex cytogenetic changes. Abnormal chromosome segregation at mitosis is one potential mechanism for genomic rearrangements in tumors. In this study, OCs were demonstrated to have dysfunctional short telomeres, anaphase bridging, and multipolar mitoses with supernumerary centrosomes. When normal human ovarian surface epithelial (HOSE) cells were transfected with human papilloma virus 16 e6/e7 genes and subsequently driven into telomere crisis, the same set of mitotic disturbances occurred in a distinct sequence, initiated by telomere dysfunction, followed by anaphase bridging, and then supernumerary centrosomes and multipolar mitoses. The anaphase bridges resolved either by kinetochore-spindle detachment, corresponding to whole-chromosome losses in the HOSE karyotypes, or by extensive fragmentation of intercentromeric DNA sequences, corresponding to a high frequency of pericentromeric rearrangements. At later passages, the high degree of instability at telomere crisis was moderated by telomerase expression and centrosome coalescence, ultimately leading to a level of mitotic instability that was highly similar to that in OC cell lines and to complex karyotypes that were similar to those observed in high-grade OCs. This suggests that a significant proportion of the structural chromosome changes and genomic losses in OC are caused by a specific sequence of mitotic disturbances triggered by telomere crisis. That the model did not produce any of the whole-chromosome gains observed in OC indicates that these changes develop through a different mechanism.
  •  
6.
  •  
7.
  •  
8.
  • Jin, Yuesheng, et al. (författare)
  • Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: consistent loss of chromosome 13 and amplification of chromosome 20
  • 2004
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 1095-6859 .- 0090-8258. ; 92:1, s. 183-191
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives. This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. Methods. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. Results. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the lists were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. Conclusion. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis. (C) 2003 Elsevier Inc. All rights reserved.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy