SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tsigaridis K.) "

Sökning: WFRF:(Tsigaridis K.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mann, G. W., et al. (författare)
  • Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:9, s. 4679-4713
  • Tidskriftsartikel (refereegranskat)abstract
    • Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e. g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
  •  
2.
  • Fauchez, Thomas J. J., et al. (författare)
  • TRAPPIST Habitable Atmosphere Intercomparison (THAI) Workshop Report
  • 2021
  • Ingår i: The Planetary Science Journal. - : Institute of Physics Publishing (IOPP). - 2632-3338. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The era of atmospheric characterization of terrestrial exoplanets is just around the corner. Modeling prior to observations is crucial in order to predict the observational challenges and to prepare for the data interpretation. This paper presents the report of the TRAPPIST Habitable Atmosphere Intercomparison workshop (2020 September 14-16). A review of the climate models and parameterizations of the atmospheric processes on terrestrial exoplanets, model advancements, and limitations, as well as direction for future model development, was discussed. We hope that this report will be used as a roadmap for future numerical simulations of exoplanet atmospheres and maintaining strong connections to the astronomical community.
  •  
3.
  • Aleinov, I, et al. (författare)
  • Modeling a Transient Secondary Paleolunar Atmosphere : 3-D Simulations and Analysis
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:10, s. 5107-5116
  • Tidskriftsartikel (refereegranskat)abstract
    • The lunar history of water deposition, loss, and transport postaccretion has become an important consideration in relation to the possibility of a human outpost on the Moon. Very recent work has shown that a secondary primordial atmosphere of up to 10 mbar could have been emplaced similar to 3.5 x 10(9) years ago due to volcanic outgassing from the maria. Using a zero-dimensional chemistry model, we demonstrate the temperature dependence of the resulting major atmospheric components (CO or CO2). We use a three-dimensional general circulation model to test the viability of such an atmosphere and derive its climatological characteristics. Based on these results, we then conjecture on its capability to transport volatiles outgassed from the maria to the permanently shadowed regions at the poles. Our preliminary results demonstrate that atmospheres as low as 1 mbar are viable and that permanent cold trapping of volatiles is only possible at the poles.
  •  
4.
  • Arneth, Almut, et al. (författare)
  • Terrestrial biogeochemical feedbacks in the climate system
  • 2010
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0908 .- 1752-0894. ; 3:8, s. 525-532
  • Forskningsöversikt (refereegranskat)abstract
    • The terrestrial biosphere is a key regulator of atmospheric chemistry and climate. During past periods of climate change, vegetation cover and interactions between the terrestrial biosphere and atmosphere changed within decades. Modern observations show a similar responsiveness of terrestrial biogeochemistry to anthropogenically forced climate change and air pollution. Although interactions between the carbon cycle and climate have been a central focus, other biogeochemical feedbacks could be as important in modulating future climate change. Total positive radiative forcings resulting from feedbacks between the terrestrial biosphere and the atmosphere are estimated to reach up to 0.9 or 1.5 W m(-2) K-1 towards the end of the twenty-first century, depending on the extent to which interactions with the nitrogen cycle stimulate or limit carbon sequestration. This substantially reduces and potentially even eliminates the cooling effect owing to carbon dioxide fertilization of the terrestrial biota. The overall magnitude of the biogeochemical feedbacks could potentially be similar to that of feedbacks in the physical climate system, but there are large uncertainties in the magnitude of individual estimates and in accounting for synergies between these effects.
  •  
5.
  • Fanourgakis, George S., et al. (författare)
  • Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:13, s. 8591-8617
  • Tidskriftsartikel (refereegranskat)abstract
    • A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters >50 and >120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (<0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (Nd=Na) and to updraft velocity (Nd=w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities Nd=Na and Nd=w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain intermodel biases on the aerosol indirect effect.
  •  
6.
  • Fauchez, Thomas J., et al. (författare)
  • The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). III. Simulated Observables-the Return of the Spectrum
  • 2022
  • Ingår i: The Planetary Science Journal. - : Institute of Physics Publishing (IOPP). - 2632-3338. ; 3:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) is a community project that aims to quantify how differences in general circulation models (GCMs) could impact the climate prediction for TRAPPIST-1e and, subsequently, its atmospheric characterization in transit. Four GCMs have participated in THAI: ExoCAM, LMD-Generic, ROCKE-3D, and the UM. This paper, focused on the simulated observations, is the third part of a trilogy, following the analysis of two land planet scenarios (Part I) and two aquaplanet scenarios (Part II). Here we show a robust agreement between the simulated spectra and the number of transits estimated to detect the land planet atmospheres. For the cloudy aquaplanet ones, a 5 sigma detection of CO2 could be achieved in about 10 transits if the atmosphere contains at least 1 bar of CO2. That number can vary by 41%-56% depending on the GCM used to predict the terminator profiles, principally due to differences in the cloud deck altitude, with ExoCAM and LMD-G producing higher clouds than ROCKE-3D and UM. Therefore, for the first time, this work provides "GCM uncertainty error bars" of similar to 50% that need to be considered in future analyses of transmission spectra. We also analyzed the intertransit spectral variability. Its magnitude differs significantly between the GCMs, but its impact on the transmission spectra is within the measurement uncertainties. THAI has demonstrated the importance of model intercomparison for exoplanets and also paved the way for a larger project to develop an intercomparison meta-framework, namely, the Climates Using Interactive Suites of Intercomparisons Nested for Exoplanet Studies.
  •  
7.
  • Gomez, J., et al. (författare)
  • The projected future degradation in air quality is caused by more abundant natural aerosols in a warmer world
  • 2023
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Higher concentrations of dust and secondary organic aerosol in the atmosphere, resulting from an intensified West African monsoon and enhanced emissions of biogenic volatile organic compounds, respectively, are projected to contribute to degrading air quality in a warmer world, suggest analyses of Earth system model simulations. Previous studies suggest that greenhouse gas-induced warming can lead to increased fine particulate matter concentrations and degraded air quality. However, significant uncertainties remain regarding the sign and magnitude of the response to warming and the underlying mechanisms. Here, we show that thirteen models from the Coupled Model Intercomparison Project Phase 6 all project an increase in global average concentrations of fine particulate matter in response to rising carbon dioxide concentrations, but the range of increase across models is wide. The two main contributors to this increase are increased abundance of dust and secondary organic aerosols via intensified West African monsoon and enhanced emissions of biogenic volatile organic compounds, respectively. Much of the inter-model spread is related to different treatment of biogenic volatile organic compounds. Our results highlight the importance of natural aerosols in degrading air quality under current warming, while also emphasizing that improved understanding of biogenic volatile organic compounds emissions due to climate change is essential for numerically assessing future air quality.
  •  
8.
  • Kanakidou, M, et al. (författare)
  • Organic aerosol and global climate modelling: a review
  • 2005
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7324. ; 4, s. 1053-1123
  • Forskningsöversikt (refereegranskat)abstract
    • The present paper reviews existing knowledge with regard to Organic Aerosol ( OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol ( SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up- to- date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies.
  •  
9.
  • Sergeev, Denis E., et al. (författare)
  • The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). II. Moist Cases-The Two Waterworlds
  • 2022
  • Ingår i: The Planetary Science Journal. - : IOP Publishing Ltd. - 2632-3338. ; 3:9
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify promising exoplanets for atmospheric characterization and to make the best use of observational data, a thorough understanding of their atmospheres is needed. Three-dimensional general circulation models (GCMs) are one of the most comprehensive tools available for this task and will be used to interpret observations of temperate rocky exoplanets. Due to parameterization choices made in GCMs, they can produce different results, even for the same planet. Employing four widely used exoplanetary GCMs-ExoCAM, LMD-G, ROCKE-3D, and the UM-we continue the TRAPPIST-1 Habitable Atmosphere Intercomparison by modeling aquaplanet climates of TRAPPIST-1e with a moist atmosphere dominated by either nitrogen or carbon dioxide. Although the GCMs disagree on the details of the simulated regimes, they all predict a temperate climate with neither of the two cases pushed out of the habitable state. Nevertheless, the intermodel spread in the global mean surface temperature is nonnegligible: 14 K and 24 K in the nitrogen- and carbon dioxide-dominated case, respectively. We find substantial intermodel differences in moist variables, with the smallest amount of clouds in LMD-Generic and the largest in ROCKE-3D. ExoCAM predicts the warmest climate for both cases and thus has the highest water vapor content and the largest amount and variability of cloud condensate. The UM tends to produce colder conditions, especially in the nitrogen-dominated case due to a strong negative cloud radiative effect on the day side of TRAPPIST-1e. Our study highlights various biases of GCMs and emphasizes the importance of not relying solely on one model to understand exoplanet climates.
  •  
10.
  • Turbet, Martin, et al. (författare)
  • The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). I. Dry Cases-The Fellowship of the GCMs
  • 2022
  • Ingår i: The Planetary Science Journal. - : IOP Publishing Ltd. - 2632-3338. ; 3:9
  • Tidskriftsartikel (refereegranskat)abstract
    • With the commissioning of powerful, new-generation telescopes such as the James Webb Space Telescope (JWST) and the ground-based Extremely Large Telescopes, the first characterization of a high molecular weight atmosphere around a temperate rocky exoplanet is imminent. Atmospheric simulations and synthetic observables of target exoplanets are essential to prepare and interpret these observations. Here we report the results of the first part of the TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) project, which compares 3D numerical simulations performed with four state-of-the-art global climate models (ExoCAM, LMD-Generic, ROCKE-3D, Unified Model) for the potentially habitable target TRAPPIST-1e. In this first part, we present the results of dry atmospheric simulations. These simulations serve as a benchmark to test how radiative transfer, subgrid-scale mixing (dry turbulence and convection), and large-scale dynamics impact the climate of TRAPPIST-1e and consequently the transit spectroscopy signature as seen by JWST. To first order, the four models give results in good agreement. The intermodel spread in the global mean surface temperature amounts to 7 K (6 K) for the N-2-dominated (CO2-dominated) atmosphere. The radiative fluxes are also remarkably similar (intermodel variations less than 5%), from the surface (1 bar) up to atmospheric pressures similar to 5 mbar. Moderate differences between the models appear in the atmospheric circulation pattern (winds) and the (stratospheric) thermal structure. These differences arise between the models from (1) large-scale dynamics, because TRAPPIST-1e lies at the tipping point between two different circulation regimes (fast and Rhines rotators) in which the models can be alternatively trapped, and (2) parameterizations used in the upper atmosphere such as numerical damping.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy