SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tuck Simon) "

Sökning: WFRF:(Tuck Simon)

  • Resultat 1-10 av 49
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  •  
3.
  • Arkblad, Eva L, et al. (författare)
  • A Caenorhabditis elegans mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress.
  • 2005
  • Ingår i: Free radical biology & medicine. - : Elsevier BV. - 0891-5849. ; 38:11, s. 1518-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Proton-translocating mitochondrial nicotinamide nucleotide transhydrogenase (NNT) was investigated regarding its physiological role in Caenorhabditis elegans. NNT catalyzes the reduction of NADP(+) by NADH driven by the electrochemical proton gradient, Deltap, and is thus a potentially important source of mitochondrial NADPH. Mitochondrial detoxification of reactive oxygen species (ROS) by glutathione-dependent peroxidases depends on NADPH for regeneration of reduced glutathione. Transhydrogenase may therefore be directly involved in the defense against oxidative stress. nnt-1 deletion mutants of C. elegans, nnt-1(sv34), were isolated and shown to grow essentially as wild type under normal laboratory conditions, but with a strongly lowered GSH/GSSG ratio. Under conditions of oxidative stress, caused by the superoxide-generating agent methyl viologen, growth of worms lacking nnt-1 activity was severely impaired. A similar result was obtained by using RNAi. Reintroducing nnt-1 in the nnt-1(sv34) knockout mutant led to a partial rescue of growth under oxidative stress conditions. These results provide evidence for the first time that nnt-1 is important in the defense against mitochondrial oxidative stress.
  •  
4.
  •  
5.
  • Chen, Changchun, 1979-, et al. (författare)
  • Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants
  • 2009
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 5:7, s. e1000561-
  • Tidskriftsartikel (refereegranskat)abstract
    • Elongator is a six subunit protein complex, conserved from yeast to humans. Mutations in the human Elongator homologue, hELP1, are associated with the neurological disease familial dysautonomia. However, how Elongator functions in metazoans, and how the human mutations affect neural functions is incompletely understood. Here we show that in Caenorhabditis elegans, ELPC-1 and ELPC-3, components of the Elongator complex, are required for the formation of the 5-carbamoylmethyl and 5-methylcarboxymethyl side chains of wobble uridines in tRNA. The lack of these modifications leads to defects in translation in C. elegans. ELPC-1::GFP and ELPC-3::GFP reporters are strongly expressed in a subset of chemosensory neurons required for salt chemotaxis learning. elpc-1 or elpc-3 gene inactivation causes a defect in this process, associated with a posttranscriptional reduction of neuropeptide and a decreased accumulation of acetylcholine in the synaptic cleft. elpc-1 and elpc-3 mutations are synthetic lethal together with those in tuc-1, which is required for thiolation of tRNAs having the 5'methylcarboxymethyl side chain. elpc-1; tuc-1 and elpc-3; tuc-1 double mutants display developmental defects. Our results suggest that, by its effect on tRNA modification, Elongator promotes both neural function and development.
  •  
6.
  • Chotard, Laëtitia, et al. (författare)
  • TBC-2 regulates RAB-5/RAB-7-mediated endosomal trafficking in Caenorhabditis elegans
  • 2010
  • Ingår i: Molecular Biology of the Cell. - : American Society for Cell Biology. - 1059-1524 .- 1939-4586. ; 21:13, s. 2285-2296
  • Tidskriftsartikel (refereegranskat)abstract
    • During endosome maturation the early endosomal Rab5 GTPase is replaced with the late endosomal Rab7 GTPase. It has been proposed that active Rab5 can recruit and activate Rab7, which in turn could inactivate and remove Rab5. However, many of the Rab5 and Rab7 regulators that mediate endosome maturation are not known. Here, we identify Caenorhabditis elegans TBC-2, a conserved putative Rab GTPase-activating protein (GAP), as a regulator of endosome to lysosome trafficking in several tissues. We show that tbc-2 mutant animals accumulate enormous RAB-7-positive late endosomes in the intestine containing refractile material. RAB-5, RAB-7, and components of the homotypic fusion and vacuole protein sorting (HOPS) complex, a RAB-7 effector/putative guanine nucleotide exchange factor (GEF), are required for the tbc-2(-) intestinal phenotype. Expression of activated RAB-5 Q78L in the intestine phenocopies the tbc-2(-) large late endosome phenotype in a RAB-7 and HOPS complex-dependent manner. TBC-2 requires the catalytic arginine-finger for function in vivo and displays the strongest GAP activity on RAB-5 in vitro. However, TBC-2 colocalizes primarily with RAB-7 on late endosomes and requires RAB-7 for membrane localization. Our data suggest that TBC-2 functions on late endosomes to inactivate RAB-5 during endosome maturation.
  •  
7.
  • Dongre, Mitesh, et al. (författare)
  • Flagella-mediated secretion of a novel Vibrio cholerae cytotoxin affecting both vertebrate and invertebrate hosts
  • 2018
  • Ingår i: Communications Biology. - : Springer Nature Publishing AG. - 2399-3642. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using Caenorhabditis elegans as an infection host model for Vibrio cholerae predator interactions, we discovered a bacterial cytotoxin, MakA, whose function as a virulence factor relies on secretion via the flagellum channel in a proton motive force-dependent manner. The MakA protein is expressed from the polycistronic makDCBA (motility-associated killing factor) operon. Bacteria expressing makDCBA induced dramatic changes in intestinal morphology leading to a defecation defect, starvation and death in C. elegans. The Mak proteins also promoted V. cholerae colonization of the zebrafish gut causing lethal infection. A structural model of purified MakA at 1.9 Å resolution indicated similarities to members of a superfamily of bacterial toxins with unknown biological roles. Our findings reveal an unrecognized role for V. cholerae flagella in cytotoxin export that may contribute both to environmental spread of the bacteria by promoting survival and proliferation in encounters with predators, and to pathophysiological effects during infections.
  •  
8.
  • Elle, Ida C, et al. (författare)
  • Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in Caenorhabditis elegans
  • 2011
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 437:2, s. 231-241
  • Tidskriftsartikel (refereegranskat)abstract
    • ACBP (acyl-CoA-binding protein) is a small primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs: four basal forms and three ACBP domain proteins. We find that each of these paralogues is capable of complementing the growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however, we find that functional loss of ACBP-1 leads to reduced triacylglycerol (triglyceride) levels and aberrant lipid droplet morphology and number in the intestine. We also show that worms lacking ACBP-2 show a severe decrease in the β-oxidation of unsaturated fatty acids. A quadruple mutant, lacking all basal ACBPs, is slightly developmentally delayed, displays abnormal intestinal lipid storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans.
  •  
9.
  • Friberg, Josefin, 1974- (författare)
  • The control of growth and metabolism in Caenorhabditis elegans
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The control of growth is a poorly understood aspect of animal development. This thesis focuses on body size regulation in Caenorhabditis elegans, and in particular, how worms grow to a certain size. In C. elegans, a key regulator of size is the TGFβ homologue DBL-1. Mutations that deplete the worm of DBL-1 result in a small body size, whereas overexpression of the gene renders long animals. The small mutants have the same number of cells as wild type suggesting that some or all cells are smaller. DBL-1 activates a TGFβ receptor leading to the nuclear localization of three Smad proteins which then initiate a transcriptional program for size control whose targets are mainly unknown. In order to learn more about how body size in C. elegans is regulated, we set up EMS mutagenesis screens to identify new loci that caused a long phenotype. A subset of the genes we have identified might function in the TGFβ signaling pathway regulating growth while others likely function in parallel pathways. One gene that we found in this screen, lon-3, encodes a cuticle collagen that genetically lies downstream of the DBL-1 TGFβ signaling pathway. Interestingly, loss of function mutations in lon-3 result in a Lon phenotype, whereas increasing the amount of LON-3 protein cause the worms to be dumpy, i.e. shorter, but slightly fatter than wild type. LON-3 is expressed in the hypodermis, the tissue from which the cuticle is synthesized and in which TGFβ signaling, regulating body size, has its focus. This study and previous work have shown that DBL-1 may affect body volume via effects on hypodermal nuclear ploidy, however this is unaffected in lon-3 mutants. Consistent with this finding, the volume of lon-3 mutant worms is not different from wild type. Taken together, our results suggest that another mechanism, by which TGFβ signaling can regulate body length, is by altering the shape of the cuticle via its effect on lon-3 and possibly other cuticle collagens. Studies in worms, flies and mice show that body size and nutrient allocation are closely connected. p70 S6-kinase (S6K) is a known regulator of cell and body size that also plays a role in metabolism. In mice and flies S6K mutants are much smaller than wild type. Our work on the worm homolog, rsks-1, shows that in worms as well, this gene is important for growth regulation and cell size. However, this effect seems to be at least in part independent of DBL-1 TGFβ signaling. Furthermore, rsks-1mutants have a 50 % increase in the amount of stored fat. Fatty acid metabolism has been shown to play an important role in environmental adaptation, especially in regards to temperature changes. Consistent with this idea, rsks-1 mutants appear to have difficulties in adjusting to such changes, reflected in a much-decreased fecundity at 15 and 25 °C compared to their cultivation temperature (20 °C). Within the nervous system the gene is specifically expressed in a subset of the chemosensory neurons that, when nutrients are abundant, secrete signals that promote growth. Intriguingly, this expression seems to be negatively regulated by insulin- like signaling, in contrast to the positive regulation of S6K by insulin in Drosophila and mice. Taken together we show that rsks-1 is an important regulator of growth and fat metabolism in Caenorhabditis elegans.
  •  
10.
  • Gaur, Rahul, et al. (författare)
  • Diet-dependent depletion of queuosine in tRNAs in Caenorhabditis elegans does not lead to a developmental block.
  • 2007
  • Ingår i: J Biosci. - 0250-5991. ; 32:4, s. 747-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Queuosine (Q), a hypermodified nucleoside,occurs at the wobble position of transfer RNAs (tRNAs)with GUN anticodons. In eubacteria, absence of Q affects messenger RNA (mRNA) translation and reduces the virulence of certain pathogenic strains. In animal cells,changes in the abundance of Q have been shown to correlate with diverse phenomena including stress tolerance, cell proliferation and tumour growth but the function of Q in animals is poorly understood. Animals are thought to obtain Q (or its analogues) as a micronutrient from dietary sources such as gut micro flora. However,the difficulty of maintaining animals under bacteria-free conditions on Q-deficient diets has severely hampered the study of Q metabolism and function in animals. In this study,we show that as in higher animals, tRNAs in the nematode Caenorhabditis elegans are modified by Q and its sugar derivatives. When the worms were fed on Q-deficient Escherichia coli, Q modification was absent from the worm tRNAs suggesting that C.elegans lacks a de novo pathway of Q biosynthesis. The inherent advantages of C.elegans as a model organism, and the simplicity of conferring a Q-deficient phenotype on it make it an ideal system to investigate the function of Q modification in tRNA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 49
Typ av publikation
tidskriftsartikel (29)
annan publikation (10)
doktorsavhandling (8)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (18)
Författare/redaktör
Tuck, Simon (38)
Nilsson, Lars (6)
Wang, Mei (2)
Kominami, Eiki (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
visa fler...
De Milito, Angelo (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Wai, Sun Nyunt (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Harris, James (2)
Zhang, Hong (2)
Zorzano, Antonio (2)
Lundstedt, Staffan (2)
Bozhkov, Peter (2)
Petersen, Morten (2)
Stenvall, Jörgen (2)
Przyklenk, Karin (2)
Noda, Takeshi (2)
Aschner, Michael (2)
Zhao, Ying (2)
Kampinga, Harm H. (2)
Zhang, Lin (2)
Harris, Adrian L. (2)
Hill, Joseph A. (2)
Tannous, Bakhos A (2)
Segura-Aguilar, Juan (2)
Dikic, Ivan (2)
Kaminskyy, Vitaliy O ... (2)
Nishino, Ichizo (2)
Okamoto, Koji (2)
Olsson, Stefan (2)
Layfield, Robert (2)
Schorderet, Daniel F ... (2)
Hofman, Paul (2)
Xu, Liang (2)
Sood, Anil K (2)
Yue, Zhenyu (2)
Corbalan, Ramon (2)
Kao, Gautam (2)
visa färre...
Lärosäte
Umeå universitet (46)
Karolinska Institutet (5)
Uppsala universitet (3)
Lunds universitet (3)
Göteborgs universitet (2)
Linköpings universitet (2)
visa fler...
Sveriges Lantbruksuniversitet (2)
Stockholms universitet (1)
Södertörns högskola (1)
visa färre...
Språk
Engelska (45)
Odefinierat språk (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Medicin och hälsovetenskap (14)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy