SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tugues Sonia) "

Sökning: WFRF:(Tugues Sonia)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Georganaki, Maria, et al. (författare)
  • Tumor endothelial cell up-regulation of IDO1 is an immunosuppressive feed-back mechanism that reduces the response to CD40-stimulating immunotherapy
  • 2020
  • Ingår i: Oncoimmunology. - : TAYLOR & FRANCIS INC. - 2162-4011 .- 2162-402X. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CD40-stimulating immunotherapy can elicit potent anti-tumor responses by activating dendritic cells and enhancing T-cell priming. Tumor vessels orchestrate T-cell recruitment during immune response, but the effect of CD40-stimulating immunotherapy on tumor endothelial cells has not been evaluated. Here, we have investigated how tumor endothelial cells transcriptionally respond to CD40-stimulating immunotherapy by isolating tumor endothelial cells from agonistic CD40 mAb- or isotype-treated mice bearing B16-F10 melanoma, and performing RNA-sequencing. Gene set enrichment analysis revealed that agonistic CD40 mAb therapy increased interferon (IFN)-related responses in tumor endothelial cells, including up-regulation of the immunosuppressive enzyme Indoleamine 2, 3-Dioxygenase 1 (IDO1). IDO1 was predominantly expressed in endothelial cells within the tumor microenvironment, and its expression in tumor endothelium was positively correlated to T-cell infiltration and to increased intratumoral expression of IFN gamma. In vitro, endothelial cells up-regulated IDO1 in response to T-cell-derived IFN gamma, but not in response to CD40-stimulation. Combining agonistic CD40 mAb therapy with the IDO1 inhibitor epacadostat delayed tumor growth in B16-F10 melanoma, associated with increased activation of tumor-infiltrating T-cells. Hereby, we show that the tumor endothelial cells up-regulate IDO1 upon CD40-stimulating immunotherapy in response to increased IFN gamma-secretion by T-cells, revealing a novel immunosuppressive feedback mechanism whereby tumor vessels limit T-cell activation.
  •  
2.
  • Koch, Sina, et al. (författare)
  • Signal transduction by vascular endothelial growth factor receptors
  • 2011
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 437, s. 169-183
  • Forskningsöversikt (refereegranskat)abstract
    • VEGFs (vascular endothelial growth factors) control vascular development during embryogenesis and the function of blood vessels and lymphatic vessels in the adult. There are five related mammalian ligands, which act through three receptor tyrosine kinases. Signalling is modulated through neuropilins, which act as VEGF co-receptors. Heparan sulfate and integrins are also important modulators of VEGF signalling. Therapeutic agents that interfere with VEGF signalling have been developed with the aim of decreasing angiogenesis in diseases that involve tissue growth and inflammation, such as cancer. The present review will outline the current understanding and consequent biology of VEGF receptor signalling.
  •  
3.
  •  
4.
  • Ribera, J., et al. (författare)
  • Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats
  • 2013
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 62:1, s. 138-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aim: The lymphatic network plays a major role in maintaining tissue fluid homoeostasis. Therefore several pathological conditions associated with oedema formation result in deficient lymphatic function. However, the role of the lymphatic system in the pathogenesis of ascites and oedema formation in cirrhosis has not been fully clarified. The aim of this study was to investigate whether the inability of the lymphatic system to drain tissue exudate contributes to the oedema observed in cirrhosis. Methods: Cirrhosis was induced in rats by CCl4 inhalation. Lymphatic drainage was evaluated using fluorescent lymphangiography. Expression of endothelial nitric oxide synthase (eNOS) was measured in primary lymphatic endothelial cells (LyECs). Inhibition of eNOS activity in cirrhotic rats with ascites (CH) was carried out by L-N G-methyl-L-arginine (L-NMMA) treatment (0.5 mg/kg/day). Results: The (CH) rats had impaired lymphatic drainage in the splanchnic and peripheral regions compared with the control (CT) rats. LyECs isolated from the CH rats showed a significant increase in eNOS and nitric oxide (NO) production. In addition, the lymphatic vessels of the CH rats showed a significant reduction in smooth muscle cell (SMC) coverage compared with the CT rats. CH rats treated with L-NMMA for 7 days showed a significant improvement in lymphatic drainage and a significant reduction in ascites volume, which were associated with increased plasma volume. This beneficial effect of L-NMMA inhibition was also associated with a significant increase in lymphatic SMC coverage. Conclusions: The upregulation of eNOS in the LyECs of CH rats causes long-term lymphatic remodelling, which is characterised by a loss of SMC lymphatic coverage. The amelioration of this lymphatic abnormality by chronic eNOS inhibition results in improved lymphatic drainage and reduced ascites.
  •  
5.
  • Roche, Francis, et al. (författare)
  • Histidine-rich glycoprotein blocks collagen-binding integrins and adhesion of endothelial cells through low-affinity interaction with alpha 2 integrin
  • 2015
  • Ingår i: Matrix Biology. - : Elsevier BV. - 0945-053X .- 1569-1802. ; 48, s. 89-99
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma protein histidine-rich glycoprotein (HRG) affects the morphology and function of both endothelial cells (ECs) and monocytes/macrophages in cancer. Here, we examined the mechanism of action of HRG's effect on ECs. HRG suppressed adhesion, spreading and migration of ECs specifically on collagen I (COL I) whereas ECs seeded on other extracellular matrix proteins were insensitive to HRG. HRG did not bind specifically to COL I or to the α-integrin binding site on collagen, GFOGER. Furthermore, HRG's inhibition of EC adhesion was not dependent upon heparan sulfate (HS) moieties as heparitinase-treated ECs remained sensitive to HRG. C2C12 cells expressing α2 integrin, the major collagen-binding α-integrin subunit in ECs, showed increased binding of HRG compared with wild type C2C12 cells lacking the α2 subunit. Recombinant α2 I-domain protein bound HRG and to a higher extent when in active conformation. However, the α2 I-domain bound weakly to HRG compared with COL I and the purified α2β1 ectodomain complex failed to retain HRG. We conclude that HRG binds to α2 integrin through low-affinity interactions in a HS-independent manner, thereby blocking EC-adhesion to COL I.
  •  
6.
  • Rolny, Charlotte, et al. (författare)
  • HRG Inhibits Tumor Growth and Metastasis by Inducing Macrophage Polarization and Vessel Normalization through Downregulation of PIGF
  • 2011
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 19:1, s. 31-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Polarization of tumor-associated macrophages (TAMs) to a proangiogenic/immune-suppressive (M2-like) phenotype and abnormal, hypoperfused vessels are hallmarks of malignancy, but their molecular basis and interrelationship remains enigmatic. We report that the host-produced histidine-rich glycoprotein (HRG) inhibits tumor growth and metastasis, while improving chemotherapy. By skewing TAM polarization away from the M2- to a tumor-inhibiting M1-like phenotype, HRG promotes antitumor immune responses and vessel normalization, effects known to decrease tumor growth and metastasis and to enhance chemotherapy. Skewing of TAM polarization by HAG relies substantially on downregulation of placental growth factor (PIGF). Besides unveiling an important role for TAM polarization in tumor vessel abnormalization, and its regulation by HRG/PIGF, these findings offer therapeutic opportunities for anticancer and antiangiogenic treatment.
  •  
7.
  • Tugues, Sònia, et al. (författare)
  • Genetic deficiency in plasma protein HRG enhances tumor growth and metastasis by exacerbating immune escape and vessel abnormalization
  • 2012
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445.
  • Tidskriftsartikel (refereegranskat)abstract
    • Histidine-rich glycoprotein (HRG) is a 75 kDa heparin-binding plasma protein implicated in the regulation of tumor growth and vascularization. In this study, we show that hrg-/- mice challenged with fibrosarcoma or pancreatic carcinomas grow larger tumors with increased metastatic properties. Compared with wild type mice, fibrosarcomas in hrg-/- mice were more hypoxic, necrotic and less perfused, indicating enhanced vessel abnormalization. HRG-deficiency was associated with a suppressed anti-tumor immune response, with both increased infiltration of M2-marker-expressing macrophages and decreased infiltration of dendritic cells and cytotoxic T cells. Analysis of transcript expression in tumor-associated as well as peritoneal macrophages from hrg-/- mice revealed an increased expression of genes associated with a pro-angiogenic and immunoinhibitory phenotype. In accordance, expression arrays performed on HRG-treated peritoneal macrophages showed induction of genes involved in extracellular matrix biology and immune responsiveness. In conclusion, our findings demonstrate that macrophages are a direct target of HRG. HRG loss influences macrophage gene regulation, leading to excess stimulation of tumor angiogenesis, suppression of tumor immune response, and increased tumor growth and metastatic spread.
  •  
8.
  • Tugues, Sònia, et al. (författare)
  • Histidine-Rich Glycoprotein Uptake and Turnover Is Mediated by Mononuclear Phagocytes.
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:9, s. e107483-
  • Tidskriftsartikel (refereegranskat)abstract
    • Histidine-rich glycoprotein (HRG) is implicated in tumor growth and metastasis by regulation of angiogenesis and inflammation. HRG is produced by hepatocytes and carried to tissues via the circulation. We hypothesized that HRG's tissue distribution and turnover may be mediated by inflammatory cells. Biodistribution parameters were analyzed by injection of radiolabeled, bioactive HRG in the circulation of healthy and tumor-bearing mice. 125I-HRG was cleared rapidly from the blood and taken up in tissues of healthy and tumor-bearing mice, followed by degradation, to an increased extent in the tumor-bearing mice. Steady state levels of HRG in the circulation were unaffected by the tumor disease both in murine tumor models and in colorectal cancer (CRC) patients. Importantly, stromal pools of HRG, detected in human CRC microarrays, were associated with inflammatory cells. In agreement, microautoradiography identified 125I-HRG in blood vessels and on CD45-positive leukocytes in mouse tissues. Moreover, radiolabeled HRG bound in a specific, heparan sulfate-independent manner, to differentiated human monocytic U937 cells in vitro. Suppression of monocyte differentiation by systemic treatment of mice with anti-colony stimulating factor-1 neutralizing antibodies led to reduced blood clearance of radiolabeled HRG and to accumulation of endogenous HRG in the blood. Combined, our data show that mononuclear phagocytes have specific binding sites for HRG and that these cells are essential for uptake of HRG from blood and distribution of HRG in tissues. Thereby, we confirm and extend our previous report that inflammatory cells mediate the effect of HRG on tumor growth and metastatic spread.
  •  
9.
  • Tugues, Sonia, et al. (författare)
  • Tetraspanin CD63 Promotes Vascular Endothelial Growth Factor Receptor 2-beta 1 Integrin Complex Formation, Thereby Regulating Activation and Downstream Signaling in Endothelial Cells in Vitro and in Vivo
  • 2013
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 288:26, s. 19060-19071
  • Tidskriftsartikel (refereegranskat)abstract
    • CD63 is a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) implicated in the regulation of membrane protein trafficking, leukocyte recruitment, and adhesion processes. We have investigated the involvement of CD63 in endothelial cell (EC) signaling downstream of beta 1 integrin and VEGF. We report that silencing of CD63 in primary ECs arrested capillary sprouting and tube formation in vitro because of impaired adhesion and migration of ECs. Mechanistically, CD63 associated with both beta 1 integrin and the main VEGF receptor on ECs, VEGFR2. Our data suggest that CD63 serves to bridge between beta 1 integrin and VEGFR2 because CD63 silencing disrupted VEGFR2-beta 1 integrin complex formation identified using proximity ligation assays. Signaling downstream of beta 1 integrin and VEGFR2 was attenuated in CD63-silenced cells, although their cell surface expression levels remained unaffected. CD63 was furthermore required for efficient internalization of VEGFR2 in response to VEGF. Importantly, systemic delivery of VEGF failed to potently induce VEGFR2 phosphorylation and downstream signaling in CD63-deficient mouse lungs. Taken together, our findings demonstrate a previously unrecognized role for CD63 in coordinated integrin and receptor tyrosine kinase signaling in vitro and in vivo.
  •  
10.
  • Tugues, Sonia, et al. (författare)
  • Vascular endothelial growth factors and receptors : Anti-angiogenic therapy in the treatment of cancer
  • 2011
  • Ingår i: Molecular Aspects of Medicine. - : Elsevier BV. - 0098-2997 .- 1872-9452. ; 32:2, s. 88-111
  • Forskningsöversikt (refereegranskat)abstract
    • Vascular endothelial growth factors (VEGFs) are critical regulators of vascular and lymphatic function during development, in health and in disease. There are five mammalian VEGF ligands and three VEGF receptor tyrosine kinases. In addition, several VEGF co-receptors that lack intrinsic catalytic activity, but that indirectly modulate the responsiveness to VEGF contribute to the final biological effect. This review describes the molecular features of VEGFs. VEGFRs and co-receptors with focus on their role in the treatment of cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy