SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tunnell C. D.) "

Sökning: WFRF:(Tunnell C. D.)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G., et al. (författare)
  • Readiness of the ATLAS Tile Calorimeter for LHC collisions
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 70:4, s. 1193-1236
  • Tidskriftsartikel (refereegranskat)abstract
    • The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector has successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of the timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design value of 1%. The determination of the global energy scale was performed with an uncertainty of 4%.
  •  
2.
  • Aalbers, Jelle, et al. (författare)
  • Solar neutrino detection sensitivity in DARWIN via electron scattering
  • 2020
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, 7Be, 13N, 15O and pep. The precision of the 13N, 15O and pep components is hindered by the double-beta decay of 136Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, sin2 theta w, and the electron-type neutrino survival probability, Pee, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and 7Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1-2.5 sigma significance, independent of external measurements from other experiments or a measurement of 8B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of 131Xe.
  •  
3.
  • Aprile, E., et al. (författare)
  • The XENON1T dark matter experiment
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.
  •  
4.
  • Aprile, E., et al. (författare)
  • Search for New Physics in Electronic Recoil Data from XENONnT
  • 2022
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 129:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3)  events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.
  •  
5.
  • Aprile, E., et al. (författare)
  • Energy resolution and linearity of XENON1T in the MeV energy range
  • 2020
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolutionwhich degrades with energy above similar to 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of Xe-136 at its Q value, Q(beta beta) similar or equal to 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 sigma/mu is as low as (0.80 +/- 0.02)% in its one-ton fiducial mass, and for single-site interactions at Q(beta beta). We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
  •  
6.
  • Aprile, E., et al. (författare)
  • Excess electronic recoil events in XENON1T
  • 2020
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 102:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We report results from searches for new physics with low-energy electronic recoil data recorded with the XENONIT detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76 +/- 2(stat) events/(tonne x year x keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4 sigma significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by g(ae) < 3.8 x 10(-12), g(ae)g(an)(eff) < 4.8 x 10(-18), and g(ae)g(a gamma) < 7.7 x 10(-22) GeV-1, and excludes either g(ae) = 0 or g(ae)g(a gamma) = g(ae)ge(an)(eff), = 0. The neutrino magnetic moment signal is similarly favored over background at 3.2 sigma, and a confidence interval of mu(nu) is an element of (1.4, 2.9) x 10(-11) mu(B) (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by beta decays of tritium at 3.2 sigma significance with a corresponding tritium concentration in xenon of (6.2 +/- 2.0) x 10(-25) mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses arc decreased to 2.0 sigma and 0.9 sigma, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3 +/- 0.2) keV (68% C.L.) with a 3.0 sigma global (4.0 sigma local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c(2). We also consider the possibility that Ar-37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar-37 concentration can be tightly constrained and is found to be negligible.
  •  
7.
  • Aprile, E., et al. (författare)
  • Projected WIMP sensitivity of the XENONnT dark matter experiment
  • 2020
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 +/- 0.6 (keV t y)(-1) and (2.2 +/- 0.5) x 10(-3 )(keV t y)(-1), respectively, in a 4t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4 x 10(-48) cm(2) for a 50 GeV/c(2) mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c(2) WIMP with cross-sections above 2.6 x 10(-48) cm(2) (5.0 x 10(-48) cm(2)) the median XENONnT discovery significance exceeds 3 sigma (5 sigma). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2 x 10(-43) cm(2) (6.0 x 10(-42) cm(2)).
  •  
8.
  • Aprile, E., et al. (författare)
  • Search for bosonic super-WIMP interactions with the XENON100 experiment
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results of searches for vector and pseudoscalar bosonic super-weakly interacting massive particles (WIMPs), which are dark matter candidates with masses at the keV-scale, with the XENON100 experiment. XENON100 is a dual-phase xenon time projection chamber operated at the Laboratori Nazionali del Gran Sasso. A profile likelihood analysis of data with an exposure of 224.6 live days x34 kg showed no evidence for a signal above the expected background. We thus obtain new and stringent upper limits in the (8-125) keV/c(2) mass range, excluding couplings to electrons with coupling constants of g(ae) > 3 x 10(-13) for pseudo-scalar and alpha'/alpha > 2 x 10(-28) for vector super-WIMPs, respectively. These limits are derived under the assumption that super-WIMPs constitute all of the dark matter in our galaxy.
  •  
9.
  • Aprile, E., et al. (författare)
  • Search for two-neutrino double electron capture of Xe-124 with XENON100
  • 2017
  • Ingår i: Physical Review C. - 2469-9985. ; 95:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For Xe-124 this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K shell of 124Xe using 7636 kg d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90% credibility limit on the half-life T-1/2 > 6.5 x 10(20) yr. We have also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and found a sensitivity of T-1/2 > 6.1 x 10(22) yr after an exposure of 2 t yr.
  •  
10.
  • Aprile, E., et al. (författare)
  • The XENON1T data acquisition system
  • 2019
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold by triggering each channel independently, achieving a single photoelectron acceptance of (93 +/- 3)%, and deferring the global trigger to a later, software stage. The event identification is based on MongoDB database queries and has over 98% efficiency at recognizing interactions at the analysis threshold in the center of the target. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy