SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tuomi Laura) "

Sökning: WFRF:(Tuomi Laura)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
2.
  • Ingelsson, Erik, et al. (författare)
  • Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans
  • 2010
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Konferensbidrag (refereegranskat)abstract
    • OBJECTIVE-Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS-We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS-The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS-Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. Diabetes 59:1266-1275, 2010
  •  
3.
  • Ingelsson, Erik, et al. (författare)
  • Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
  •  
4.
  • Prokopenko, Inga, et al. (författare)
  • Variants in MTNR1B influence fasting glucose levels
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 77-81
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
  •  
5.
  • Saxena, Richa, et al. (författare)
  • Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:2, s. 142-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958–30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, β (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 × 10−15). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 × 10−17; ratio of insulin to glucose area under the curve, P = 1.3 × 10−16) and diminished incretin effect (n = 804; P = 4.3 × 10−4). We also identified variants at ADCY5 (rs2877716, P = 4.2 × 10−16), VPS13C (rs17271305, P = 4.1 × 10−8), GCKR (rs1260326, P = 7.1 × 10−11) and TCF7L2 (rs7903146, P = 4.2 × 10−10) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09–1.15, P = 4.8 × 10−18).
  •  
6.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
7.
  • Voight, Benjamin F., et al. (författare)
  • Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:7, s. 579-589
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 x 10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
  •  
8.
  • Bathmann, Ulrich, et al. (författare)
  • Editorial : Living Along Gradients: Past, Present, Future
  • 2020
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The Baltic Sea is a geologically and evolutionarily young part of the coastal ocean that experienced, in its past, several severe environmental changes. In its present state, the Baltic Sea is characterized by both horizontal and vertical gradients of environmental conditions. As a huge estuary, it shows a west to east/south to north surface salinity gradient from 24 in Kattegat to nearly freshwater in the Bothnian Bay. The vertical salinity and oxygen gradients result in stratification which causes hypoxic and sulfidic anoxic conditions in deep basins. These gradient systems are impacted by natural and anthropogenic changes due to physico-chemical driving forces, varying over time and space. Gradient environments produce an imprint on both the structure and function of the biological systems and influence biogeochemical cycling. Besides, coastal seas in general and the Baltic Sea in particular, experience constant and direct influence from land with consequences to matter and energy cycles, biogeochemical interactions, energy fluxes, and sediment dynamics. “Living along gradients: past, present, future” in the Baltic are today’s very important aspects that rise questions like which of the effects we are detecting occur naturally, and which are driven by human activities. Deciphering past environmental changes and their causes provide keys to understand and simulate possible future scenarios, all of which should rise societal awareness and implementation of appropriate marine and coastal policies. Present-day knowledge on the dynamics of gradient systems, on the processes that affect the coastal sea environment, the results of interaction between coastal seas and society, the detection or reconstruction of past and present changes on time scales from inter-annual to millennial, and future change models are summarized here, with the idea to stimulate scientific exchange on most complex questions, addressing them from different perspectives.
  •  
9.
  • Beelen, Rob, et al. (författare)
  • Long-term Exposure to Air Pollution and Cardiovascular Mortality An Analysis of 22 European Cohorts
  • 2014
  • Ingår i: Epidemiology. - : Lippincott Williams & Wilkins. - 1044-3983 .- 1531-5487. ; 25:3, s. 368-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air pollution has been associated with cardiovascular mortality, but it remains unclear as to whether specific pollutants are related to specific cardiovascular causes of death. Within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE), we investigated the associations of long-term exposure to several air pollutants with all cardiovascular disease (CVD) mortality, as well as with specific cardiovascular causes of death. Methods: Data from 22 European cohort studies were used. Using a standardized protocol, study area-specific air pollution exposure at the residential address was characterized as annual average concentrations of the following: nitrogen oxides (NO2 and NOx); particles with diameters of less than 2.5 mu m (PM2.5), less than 10 mu m (PM10), and 10 mu m to 2.5 mu m (PMcoarse); PM2.5 absorbance estimated by land-use regression models; and traffic indicators. We applied cohort-specific Cox proportional hazards models using a standardized protocol. Random-effects meta-analysis was used to obtain pooled effect estimates. Results: The total study population consisted of 367,383 participants, with 9994 deaths from CVD (including 4,992 from ischemic heart disease, 2264 from myocardial infarction, and 2484 from cerebrovascular disease). All hazard ratios were approximately 1.0, except for particle mass and cerebrovascular disease mortality; for PM2.5, the hazard ratio was 1.21 (95% confidence interval = 0.87-1.69) per 5 mu g/m(3) and for PM10, 1.22 (0.91-1.63) per 10 mu g/m(3). Conclusion: In a joint analysis of data from 22 European cohorts, most hazard ratios for the association of air pollutants with mortality from overall CVD and with specific CVDs were approximately 1.0, with the exception of particulate mass and cerebrovascular disease mortality for which there was suggestive evidence for an association.
  •  
10.
  • Beelen, Rob, et al. (författare)
  • Natural-Cause Mortality and Long-Term Exposure to Particle Components : An Analysis of 19 European Cohorts within the Multi-Center ESCAPE Project
  • 2015
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 123:6, s. 525-533
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Studies have shown associations between mortality and long-term exposure to particulate matter air pollution. Few cohort studies have estimated the effects of the elemental composition of particulate matter on mortality. Objectives: Our aim was to study the association between natural-cause mortality and long-term exposure to elemental components of particulate matter. Methods: Mortality and confounder data from 19 European cohort studies were used. Residential exposure to eight a priori-selected components of particulate matter ( PM) was characterized following a strictly standardized protocol. Annual average concentrations of copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc within PM size fractions <= 2.5 mu m (PM2.5) and <= 10 mu m (PM10) were estimated using land-use regression models. Cohort-specific statistical analyses of the associations between mortality and air pollution were conducted using Cox proportional hazards models using a common protocol followed by meta-analysis. Results: The total study population consisted of 291,816 participants, of whom 25,466 died from a natural cause during follow-up (average time of follow-up, 14.3 years). Hazard ratios were positive for almost all elements and statistically significant for PM2.5 sulfur (1.14; 95% CI: 1.06, 1.23 per 200ng/m(3)). In a two-pollutant model, the association with PM2.5 sulfur was robust to adjustment for PM2.5 mass, whereas the association with PM2.5 mass was reduced. Conclusions: Long-term exposure to PM2.5 sulfur was associated with natural-cause mortality. This association was robust to adjustment for other pollutants and PM2.5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (24)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (27)
Författare/redaktör
Tuomi, Tiinamaija (19)
Wareham, Nicholas J. (18)
Boehnke, Michael (18)
Barroso, Ines (18)
Jackson, Anne U. (18)
Groop, Leif (17)
visa fler...
Laakso, Markku (17)
McCarthy, Mark I (17)
Mohlke, Karen L (17)
Tuomilehto, Jaakko (17)
Prokopenko, Inga (17)
Bergman, Richard N (17)
Kuusisto, Johanna (16)
Collins, Francis S. (16)
Stringham, Heather M (16)
Scott, Laura J (16)
Isomaa, Bo (15)
Frayling, Timothy M (15)
Bonnycastle, Lori L. (15)
Lindgren, Cecilia M. (15)
Langenberg, Claudia (14)
Hattersley, Andrew T (14)
Meigs, James B. (14)
Grallert, Harald (14)
Florez, Jose C. (14)
Watanabe, Richard M (14)
Hu, Frank B. (13)
Qi, Lu (13)
Loos, Ruth J F (13)
Illig, Thomas (13)
Narisu, Narisu (13)
Lyssenko, Valeriya (12)
Salomaa, Veikko (12)
Hansen, Torben (12)
Altshuler, David (12)
Dupuis, Josée (12)
Morris, Andrew P. (12)
Pedersen, Oluf (11)
Thorleifsson, Gudmar (11)
Stefansson, Kari (11)
Abecasis, Goncalo R. (11)
Gieger, Christian (11)
Froguel, Philippe (11)
Luan, Jian'an (11)
Palmer, Colin N. A. (11)
Morris, Andrew D (11)
Zeggini, Eleftheria (11)
Chines, Peter S. (11)
Perry, John R.B. (11)
Erdos, Michael R (11)
visa färre...
Lärosäte
Lunds universitet (16)
Uppsala universitet (15)
Karolinska Institutet (12)
Umeå universitet (9)
Stockholms universitet (8)
Göteborgs universitet (3)
visa fler...
Södertörns högskola (1)
visa färre...
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (19)
Naturvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy