SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Turek Thomas) "

Sökning: WFRF:(Turek Thomas)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nguyen, Thanh N, et al. (författare)
  • Global Impact of the COVID-19 Pandemic on Stroke Volumes and Cerebrovascular Events: A 1-Year Follow-up.
  • 2023
  • Ingår i: Neurology. - 1526-632X. ; 100:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Declines in stroke admission, IV thrombolysis (IVT), and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the effect of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), IVT, and mechanical thrombectomy over a 1-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020).We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, IVT treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.There were 148,895 stroke admissions in the 1 year immediately before compared with 138,453 admissions during the 1-year pandemic, representing a 7% decline (95% CI [95% CI 7.1-6.9]; p < 0.0001). ICH volumes declined from 29,585 to 28,156 (4.8% [5.1-4.6]; p < 0.0001) and IVT volume from 24,584 to 23,077 (6.1% [6.4-5.8]; p < 0.0001). Larger declines were observed at high-volume compared with low-volume centers (all p < 0.0001). There was no significant change in mechanical thrombectomy volumes (0.7% [0.6-0.9]; p = 0.49). Stroke was diagnosed in 1.3% [1.31-1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82-2.97], 5,656/195,539) of all stroke hospitalizations.There was a global decline and shift to lower-volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared with the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year.This study is registered under NCT04934020.
  •  
2.
  • Gimpel, Thomas, et al. (författare)
  • Electrochemical Carbon Dioxide Reduction on Femtosecond Laser-Processed Copper Electrodes : Effect on the Liquid Products by Structuring and Doping
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:6, s. 5927-5934
  • Tidskriftsartikel (refereegranskat)abstract
    • A femtosecond laser process is presented increasing the surface area of copper electrocatalysts for an electrochemical CO2 reduction reaction (CO2RR). The laser treatment allows us to tune the surface morphology and the chemical composition of the copper electrocatalysts. This tunability is used to correlate the role of the surface area and catalyst dopants with the selectivity of the CO2RR. The liquid products of the CO2RR are monitored through ex situ nuclear magnetic resonance spectroscopy. The products’ distribution shows that the electrode surface area plays a key role in the electrochemical conversion of CO2 into multicarbon liquid products. We show that sulfur dopants boost the production of formate. Remarkably, by co-doping sulfur and fluoride, we show that the chalcogenide dopant counteracts the known boosting effect of fluoride to convert CO2 into multicarbon products. Oxygen doping in the range of 2–19 atom % does not significantly affect the distribution of liquid products from CO2 electroreduction. In a broad perspective, this work highlights the potential of the femtosecond laser process to fine-tune surfaces to produce photo- and electrocatalyst materials.
  •  
3.
  •  
4.
  • 2017
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy