SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tusman Gerardo) "

Sökning: WFRF:(Tusman Gerardo)

  • Resultat 1-10 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferrando, Carlos, et al. (författare)
  • Effects of oxygen on post-surgical infections during an individualised perioperative open-lung ventilatory strategy : a randomised controlled trial
  • 2020
  • Ingår i: British Journal of Anaesthesia. - : ELSEVIER SCI LTD. - 0007-0912 .- 1471-6771. ; 124:1, s. 110-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to examine whether using a high fraction of inspired oxygen (FIO2) in the context of an individualised intra- and postoperative open-lung ventilation approach could decrease surgical site infection (SSI) in patients scheduled for abdominal surgery. Methods: We performed a multicentre, randomised controlled clinical trial in a network of 21 university hospitals from June 6, 2017 to July 19, 2018. Patients undergoing abdominal surgery were randomly assigned to receive a high (0.80) or conventional (0.3) FIO2 during the intraoperative period and during the first 3 postoperative hours. All patients were mechanically ventilated with an open-lung strategy, which included recruitment manoeuvres and individualised positive end-expiratory pressure for the best respiratory-system compliance, and individualised continuous postoperative airway pressure for adequate peripheral oxyhaemoglobin saturation. The primary outcome was the prevalence of SSI within the first 7 postoperative days. The secondary outcomes were composites of systemic complications, length of intensive care and hospital stay, and 6-month mortality. Results: We enrolled 740 subjects: 371 in the high FIO2 group and 369 in the low FIO2 group. Data from 717 subjects were available for final analysis. The rate of SSI during the first postoperative week did not differ between high (8.9%) and low (9.4%) FIO2 groups (relative risk [RR]: 0.94; 95% confidence interval [CI]: 0.59-1.50; P=0.90]). Secondary outcomes, such as atelectasis (7.7% vs 9.8%; RR: 0.77; 95% CI: 0.48-1.25; P=0.38) and myocardial ischaemia (0.6% [n=2] vs 0% [n=0]; P=0.47) did not differ between groups. Conclusions: An oxygenation strategy using high FIO2 compared with conventional FIO2 did not reduce postoperative SSIs in abdominal surgery. No differences in secondary outcomes or adverse events were found.
  •  
2.
  • Ferrando, Carlos, et al. (författare)
  • Rationale and study design for an individualised perioperative open-lung ventilatory strategy with a high versus conventional inspiratory oxygen fraction (iPROVE-O2) and its effects on surgical site infection : study protocol for a randomised controlled trial
  • 2017
  • Ingår i: BMJ Open. - : BMJ. - 2044-6055. ; 7:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Surgical site infection (SSI) is a serious postoperative complication that increases morbidity and healthcare costs. SSIs tend to increase as the partial pressure of tissue oxygen decreases: previous trials have focused on trying to reduce them by comparing high versus conventional inspiratory oxygen fractions (FIO 2) in the perioperative period but did not use a protocolised ventilatory strategy. The open-lung ventilatory approach restores functional lung volume and improves gas exchange, and therefore it may increase the partial pressure of tissue oxygen for a given FIO 2. The trial presented here aims to compare the efficacy of high versus conventional FIO 2 in reducing the overall incidence of SSIs in patients by implementing a protocolised and individualised global approach to perioperative open-lung ventilation. Methods and analysis This is a comparative, prospective, multicentre, randomised and controlled two-arm trial that will include 756 patients scheduled for abdominal surgery. The patients will be randomised into two groups: (1) a high FIO 2 group (80% oxygen; FIO 2 of 0.80) and (2) a conventional FIO 2 group (30% oxygen; FIO 2 of 0.30). Each group will be assessed intra-and postoperatively. The primary outcome is the appearance of postoperative SSI complications. Secondary outcomes are the appearance of systemic and pulmonary complications. Ethics and dissemination The iPROVE-O2 trial has been approved by the Ethics Review Board at the reference centre (the Hospital Clinico Universitario in Valencia). Informed consent will be obtained from all patients before their participation. If the approach using high FIO 2 during individualised open-lung ventilation decreases SSIs, use of this method will become standard practice for patients scheduled for future abdominal surgery. Publication of the results is anticipated in early 2019.
  •  
3.
  • Acosta, Cecilia M., et al. (författare)
  • Doppler images of intra-pulmonary shunt within atelectasis in anesthetized children
  • 2016
  • Ingår i: Critical Ultrasound Journal. - : Springer Science and Business Media LLC. - 2036-3176 .- 2036-7902. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Doppler images of pulmonary vessels in pulmonary diseases associated with subpleural consolidations have been described. Color Doppler easily identifies such vessels within consolidations while spectral Doppler analysis allows the differentiation between pulmonary and bronchial arteries. Thus, Doppler helps in diagnosing the nature of consolidations. To our knowledge, Doppler analysis of pulmonary vessels within anesthesia-induced atelectasis has never been described before. The aim of this case series is to demonstrate the ability of lung ultrasound to detect the shunting of blood within atelectatic lung areas in anesthetized children.Findings: Three anesthetized and mechanically ventilated children were scanned in the supine position using a high-resolution linear probe of 6-12 MHz. Once subpleural consolidations were detected in the most dependent posterior lung regions, the probe was rotated such that its long axis followed the intercostal space. In this oblique position, color Doppler mapping was performed to detect blood flow within the consolidation. Thereafter, pulsed waved spectral Doppler was applied in the previously identified vessels during a short expiratory pause, which prevented interferences from respiratory motion. Different flow patterns were identified which corresponded to both, pulmonary and bronchial vessels. Finally, a lung recruitment maneuver was performed which leads to the complete resolution of the aforementioned consolidation thereby confirming the pathophysiological entity of anesthesia-induced atelectasis.Conclusions: Lung ultrasound is a non-invasive imaging tool that not only enables the diagnosis of anesthesia-induced atelectasis in pediatric patients but also analysis of shunting blood within this consolidation.
  •  
4.
  • Acosta, Cecilia M., et al. (författare)
  • Effect of an Individualized Lung Protective Ventilation on Lung Strain and Stress in Children Undergoing Laparoscopy : An Observational Cohort Study
  • 2024
  • Ingår i: Anesthesiology. - : American Society of Anesthesiologists. - 0003-3022 .- 1528-1175. ; 140:3, s. 430-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Exaggerated lung strain and stress could damage lungs in anesthetized children. The authors hypothesized that the association of capnoperitoneum and lung collapse in anesthetized children increases lung strain-stress. Their primary aim was to describe the impact of capnoperitoneum on lung strain-stress and the effects of an individualized protective ventilation during laparoscopic surgery in children.Methods: The authors performed an observational cohort study in healthy children aged 3 to 7 yr scheduled for laparoscopic surgery in a community hospital. All received standard protective ventilation with 5 cm H2O of positive end-expiratory pressure (PEEP). Children were evaluated before capnoperitoneum, during capnoperitoneum before and after lung recruitment and optimized PEEP (PEEP adjusted to get end-expiratory transpulmonary pressure of 0), and after capnoperitoneum with optimized PEEP. The presence of lung collapse was evaluated by lung ultrasound, positive Air-Test (oxygen saturation measured by pulse oximetry 96% or less breathing 21% O2 for 5 min), and negative end-expiratory transpulmonary pressure. Lung strain was calculated as tidal volume/end-expiratory lung volume measured by capnodynamics, and lung stress as the end-inspiratory transpulmonary pressure.Results: The authors studied 20 children. Before capnoperitoneum, mean lung strain was 0.20 ± 0.07 (95% CI, 0.17 to 0.23), and stress was 5.68 ± 2.83 (95% CI, 4.44 to 6.92) cm H2O. During capnoperitoneum, 18 patients presented lung collapse and strain (0.29 ± 0.13; 95% CI, 0.23 to 0.35; P < 0.001) and stress (5.92 ± 3.18; 95% CI, 4.53 to 7.31 cm H2O; P = 0.374) increased compared to before capnoperitoneum. During capnoperitoneum and optimized PEEP, children presenting lung collapse were recruited and optimized PEEP was 8.3 ± 2.2 (95% CI, 7.3 to 9.3) cm H2O. Strain returned to values before capnoperitoneum (0.20 ± 0.07; 95% CI, 0.17 to 0.22; P = 0.318), but lung stress increased (7.29 ± 2.67; 95% CI, 6.12 to 8.46 cm H2O; P = 0.020). After capnoperitoneum, strain decreased (0.18 ± 0.04; 95% CI, 0.16 to 0.20; P = 0.090), but stress remained higher (7.25 ± 3.01; 95% CI, 5.92 to 8.57 cm H2O; P = 0.024) compared to before capnoperitoneum.Conclusions: Capnoperitoneum increased lung strain in healthy children undergoing laparoscopy. Lung recruitment and optimized PEEP during capnoperitoneum decreased lung strain but slightly increased lung stress. This little rise in pulmonary stress was maintained within safe, lung-protective, and clinically acceptable limits.
  •  
5.
  • Acosta, Cecilia M., et al. (författare)
  • Prevention of atelectasis by continuous positive airway pressure in anaesthetised children : A randomised controlled study
  • 2021
  • Ingår i: European Journal of Anaesthesiology. - : Wolters Kluwer. - 0265-0215 .- 1365-2346. ; 38:1, s. 41-48
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Continuous positive airway pressure (CPAP) prevents peri-operative atelectasis in adults, but its effect in children has not been quantified.OBJECTIVE The aim of this study was to evaluate the role of CPAP in preventing postinduction and postoperative atelectasis in children under general anaesthesia.DESIGN A randomised controlled study.SETTING Single-institution study, community hospital, Mar del Plata. Argentina.PATIENTS We studied 42 children, aged 6 months to 7 years, American Society of Anesthesiologists physical status class I, under standardised general anaesthesia.INTERVENTIONS Patients were randomised into two groups: Control group (n = 21): induction and emergence of anaesthesia without CPAP; and CPAP group (n = 21): 5 cmH2O of CPAP during induction and emergence of anaesthesia. Lung ultrasound (LUS) imaging was performed before and 5 min after anaesthesia induction. Children without atelectasis were ventilated in the same manner as the Control group with standard ventilatory settings including 5 cmH2O of PEEP. Children with atelectasis received a recruitment manoeuvre followed by standard ventilation with 8 cmH2O of PEEP. Then, at the end of surgery, LUS images were repeated before tracheal extubation and 60 min after awakening.MAIN OUTCOME MEASURES Lung aeration score and atelectasis assessed by LUS.RESULTS Before anaesthesia, all children were free of atelectasis. After induction, 95% in the Control group developed atelectasis compared with 52% of patients in the CPAP group (P < 0.0001). LUS aeration scores were higher (impaired aeration) in the Control group than the CPAP group (8.8 ± 3.8 vs. 3.5 ± 3.3 points; P < 0.0001). At the end of surgery, before tracheal extubation, atelectasis was observed in 100% of children in the Control and 29% of the CPAP group (P < 0.0001) with a corresponding aeration score of 9.6 ± 3.2 and 1.8 ± 2.3, respectively (P < 0.0001). After surgery, 30% of children in the Control group and 10% in the CPAP group presented with residual atelectasis (P < 0.0001) also corresponding to a higher aeration score in the Control group (2.5 ± 3.1) when compared with the CPAP group (0.5 ± 1.5; P < 0.01).CONCLUSION The use of 5 cmH2O of CPAP in healthy children of the studied age span during induction and emergence of anaesthesia effectively prevents atelectasis, with benefits maintained during the first postoperative hour.TRIAL REGISTRY Clinicaltrials.gov NCT03461770.
  •  
6.
  • Borges, João Batista, et al. (författare)
  • Regional Lung Perfusion estimated by Electrical Impedance Tomography in a piglet model of lung collapse
  • 2011
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 112:1, s. 225-236
  • Tidskriftsartikel (refereegranskat)abstract
    • The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology which provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT) based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6 %, with a standard deviation of 2.9 %. This method outperformed the estimates of lung perfusion based on impedance-pulsatility. In conclusion, we describe a novel method based on Electrical Impedance Tomography for estimating regional lung perfusion at the bedside. In both, healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this paper has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.
  •  
7.
  • Carraminana, Albert, et al. (författare)
  • Rationale and Study Design for an Individualized Perioperative Open Lung Ventilatory Strategy in Patients on One-Lung Ventilation (iPROVE-OLV)
  • 2019
  • Ingår i: Journal of Cardiothoracic and Vascular Anesthesia. - : W B SAUNDERS CO-ELSEVIER INC. - 1053-0770 .- 1532-8422. ; 33:9, s. 2492-2502
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aim of this clinical trial is to examine whether it is possible to reduce postoperative complications using an individualized perioperative ventilatory strategy versus using a standard lung-protective ventilation strategy in patients scheduled for thoracic surgery requiring one-lung ventilation. Design: International, multicenter, prospective, randomized controlled clinical trial. Setting: A network of university hospitals. Participants: The study comprises 1,380 patients scheduled for thoracic surgery. Interventions: The individualized group will receive intraoperative recruitment maneuvers followed by individualized positive end-expiratory pressure (open lung approach) during the intraoperative period plus postoperative ventilatory support with high-flow nasal cannula, whereas the control group will be managed with conventional lung-protective ventilation. Measurements and Main Results: Individual and total number of postoperative complications, including atelectasis, pneumothorax, pleural effusion, pneumonia, acute lung injury; unplanned readmission and reintubation; length of stay and death in the critical care unit and in the hospital will be analyzed for both groups. The authors hypothesize that the intraoperative application of an open lung approach followed by an individual indication of high-flow nasal cannula in the postoperative period will reduce pulmonary complications and length of hospital stay in high-risk surgical patients. (C) 2019 Published by Elsevier Inc.
  •  
8.
  • Ferrando, Carlos, et al. (författare)
  • A noninvasive postoperative clinical score to identify patients at risk for postoperative pulmonary complications : the Air-Test Score
  • 2020
  • Ingår i: Minerva Anestesiologica. - : EDIZIONI MINERVA MEDICA. - 0375-9393 .- 1827-1596. ; 86:4, s. 404-415
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Postoperative pulmonary complications (PPCs) negatively affect morbidity, healthcare costs and postsurgical survival. Preoperative and intraoperative peripheral oxyhemoglobin saturation (SpO(2)) levels are independent risk factors for postoperative pulmonary complications (PPCs). The air-test assesses the value of SpO(2) while breathing room-air. We aimed at building a clinical score that includes the air-test for predicting the risk for PPCs. METHODS: This is a development and validation study in patients -randomly divided into two cohorts- from a large randomized clinical trial (iPROVE) that enrolled 964 intermediate-to-high risk patients scheduled for abdominal surgery. Arterial oxygenation was assessed on room-air in the preoperative period (preoperative air-test) and 3h after admission to the postoperative care unit (postoperative air-test). The air-test was defined as positive or negative if SpO(2) was <= 96% or >96%, respectively. Positive air-tests were stratified into weak (93-96%) or strong (<93%). The primary outcome was a composite of moderate-to-severe PPCs during the first seven postoperative days. RESULTS: A total of 902 patients were included in the final analysis (542 in the development cohort and 360 in the validation cohort). Regression analysis identified five independent risk factors for PPC: age. type of surgery, pre- and postoperative air-test, and atelectasis. The area under the receiver operating characteristic curve (AUC) was 0.79 (95% CI: 0.75-0.82) when including these five independent predictors. We built a simplified score termed "air-test score" by using only the pre- and postoperative SpO(2) , resulting in an AUC of 0.72 (95% CI: 0.67-0.76) for the derivation and 0.72 (95% CI: 0.66-0.78) for the validation cohort, respectively. The air-test score stratified patients into four levels of risk, with PPCs ranging from <15% to >75%. CONCLUSIONS: The simple, non-invasive and inexpensive bedside air-test score, evaluating pre- and postoperatively SpO(2) measured on room-air, helps to predict the risk for PPCs.
  •  
9.
  • Ferrando, Carlos, et al. (författare)
  • Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance
  • 2015
  • Ingår i: Critical Care. - : Springer Science and Business Media LLC. - 1364-8535 .- 1466-609X. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The stress index ( SI), a parameter derived from the shape of the pressure-time curve, can identify injurious mechanical ventilation. We tested the hypothesis that adjusting tidal volume (VT) to a non-injurious SI in an open lung condition avoids hypoventilation while preventing overdistension in an experimental model of combined lung injury and low chest-wall compliance (Ccw). Methods: Lung injury was induced by repeated lung lavages using warm saline solution, and Ccw was reduced by controlled intra-abdominal air-insufflation in 22 anesthetized, paralyzed and mechanically ventilated pigs. After injury animals were recruited and submitted to a positive end-expiratory pressure (PEEP) titration trial to find the PEEP level resulting in maximum compliance. During a subsequent four hours of mechanical ventilation, VT was adjusted to keep a plateau pressure (Pplat) of 30 cmH2O (Pplat-group, n = 11) or to a SI between 0.95 and 1.05 (SI-group, n = 11). Respiratory rate was adjusted to maintain a 'normal' PaCO2 (35 to 65 mmHg). SI, lung mechanics, arterial-blood gases haemodynamics pro-inflammatory cytokines and histopathology were analyzed. In addition Computed Tomography (CT) data were acquired at end expiration and end inspiration in six animals. Results: PaCO2 was significantly higher in the Pplat-group (82 versus 53 mmHg, P = 0.01), with a resulting lower pH (7.19 versus 7.34, P = 0.01). We observed significant differences in VT (7.3 versus 5.4 mlKg-1, P = 0.002) and Pplat values (30 versus 35 cmH2O, P = 0.001) between the Pplat-group and SI-group respectively. SI (1.03 versus 0.99, P = 0.42) and end-inspiratory transpulmonary pressure (PTP) (17 versus 18 cmH2O, P = 0.42) were similar in the Pplat-and SI-groups respectively, without differences in overinflated lung areas at end-inspiration in both groups. Cytokines and histopathology showed no differences. Conclusions: Setting tidal volume to a non-injurious stress index in an open lung condition improves alveolar ventilation and prevents overdistension without increasing lung injury. This is in comparison with limited Pplat protective ventilation in a model of lung injury with low chest-wall compliance.
  •  
10.
  • Ferrando, Carlos, et al. (författare)
  • Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE) : a randomised controlled trial
  • 2018
  • Ingår i: The Lancet Respiratory Medicine. - : ELSEVIER SCI LTD. - 2213-2600 .- 2213-2619. ; 6:3, s. 193-203
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The effects of individualised perioperative lung-protective ventilation (based on the open-lung approach [OLA]) on postoperative complications is unknown. We aimed to investigate the effects of intraoperative and postoperative ventilatory management in patients scheduled for abdominal surgery, compared with standard protective ventilation. Methods We did this prospective, multicentre, randomised controlled trial in 21 teaching hospitals in Spain. We enrolled patients who were aged 18 years or older, were scheduled to have abdominal surgery with an expected time of longer than 2 h, had intermediate-to-high-risk of developing postoperative pulmonary complications, and who had a body-mass index less than 35 kg/m(2). Patients were randomly assigned (1: 1: 1: 1) online to receive one of four lung-protective ventilation strategies using low tidal volume plus positive end-expiratory pressure (PEEP): open-lung approach (OLA)-iCPAP (individualised intraoperative ventilation [individualised PEEP after a lung recruitment manoeuvre] plus individualised postoperative continuous positive airway pressure [CPAP]), OLA-CPAP (intraoperative individualised ventilation plus postoperative CPAP), STD-CPAP (standard intraoperative ventilation plus postoperative CPAP), or STD-O-2 (standard intraoperative ventilation plus standard postoperative oxygen therapy). Patients were masked to treatment allocation. Investigators were not masked in the operating and postoperative rooms; after 24 h, data were given to a second investigator who was masked to allocations. The primary outcome was a composite of pulmonary and systemic complications during the first 7 postoperative days. We did the primary analysis using the modified intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT02158923. Findings Between Jan 2, 2015, and May 18, 2016, we enrolled 1012 eligible patients. Data were available for 967 patients, whom we included in the final analysis. Risk of pulmonary and systemic complications did not differ for patients in OLA-iCPAP (110 [46%] of 241, relative risk 0.89 [95% CI 0.74-1.07; p=0.25]), OLA-CPAP (111 [47%] of 238, 0.91 [0.76-1.09; p=0.35]), or STD-CPAP groups (118 [48%] of 244, 0.95 [0.80-1.14; p=0.65]) when compared with patients in the STD-O-2 group (125 [51%] of 244). Intraoperatively, PEEP was increased in 69 (14%) of patients in the standard perioperative ventilation groups because of hypoxaemia, and no patients from either of the OLA groups required rescue manoeuvres. Interpretation In patients who have major abdominal surgery, the different perioperative open lung approaches tested in this study did not reduce the risk of postoperative complications when compared with standard lung-protective mechanical ventilation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 54

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy