SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tuukkanen J.) "

Sökning: WFRF:(Tuukkanen J.)

  • Resultat 1-10 av 46
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Farman, H. H., et al. (författare)
  • Female mice lacking estrogen receptor-α in hypothalamic proopiomelanocortin (POMC) neurons display enhanced estrogenic response on cortical bone mass
  • 2016
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 157:8, s. 3242-3252
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor(ER)α.CentralERα exertsaninhibitoryroleonbonemass.ERα ishighlyexpressedinthearcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα -/- ). Female POMC-ERα -/- and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα -/- mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERaα-mediated effects in bone determines cortical bone mass in female mice.
  •  
2.
  • Nilsson, Karin H., et al. (författare)
  • RSPO3 is important for trabecular bone and fracture risk in mice and humans
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here, the authors show that RSPO3 exerts an important role for vertebral trabecular bone mass and bone strength in mice and fracture risk in humans. With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.
  •  
3.
  • Farman, Helen H., 1983, et al. (författare)
  • Female Mice Lacking Estrogen Receptor-alpha in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass
  • 2016
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 157:8, s. 3242-3252
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor(ER)alpha. Central ER alpha exerts an inhibitory role on bone mass. ER alpha is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ER alpha in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ER alpha expression specifically in POMC neurons (POMC-ER alpha(-/-)). Female POMC-ER alpha(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 mu g/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ER alpha(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+ 126 +/- 34%, P < .01) and mechanical strength (+ 193 +/- 38%, P <.01). To test whether ER alpha in VMN is involved in the regulation of bone mass, ER alpha was silenced using an adeno-associated viral vector. Silencing of ER alpha in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ER alpha in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ER alpha activity in hypothalamic POMC neuronsin ARC and stimulatory peripheral ER alpha-mediated effects in bone determines cortical bone mass in female mice.
  •  
4.
  •  
5.
  • Moverare-Skrtic, Sofia, et al. (författare)
  • B4GALNT3 regulates glycosylation of sclerostin and bone mass
  • 2023
  • Ingår i: eBioMedicine. - 2352-3964. ; 91
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). Methods To determine if B4GALNT3 is the causal gene, B4galnt3 / mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. Findings B4galnt3 / mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3 / mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. Interpretation B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. Funding Found in acknowledgements.
  •  
6.
  • Windahl, Sara H, 1971, et al. (författare)
  • Estrogen receptor-alpha in osteocytes is important for trabecular bone formation in male mice
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424. ; 110:6, s. 2294-2299
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-sparing effect of estrogen in both males and females is primarily mediated via estrogen receptor-alpha (ER alpha), encoded by the Esr1 gene. ER alpha in osteoclasts is crucial for the trabecular bone-sparing effect of estrogen in females, but it is dispensable for trabecular bone in male mice and for cortical bone in both genders. We hypothesized that ER alpha in osteocytes is important for trabecular bone in male mice and for cortical bone in both males and females. Dmp1-Cre mice were crossed with ER alpha(flox/flox) mice to generate mice lacking ER alpha protein expression specifically in osteocytes (Dmp1-ER alpha(-/-)). Male Dmp1-ER alpha(-/-) mice displayed a substantial reduction in trabecular bone volume (-20%, P < 0.01) compared with controls. Dynamic histomorphometry revealed reduced bone formation rate (-45%, P < 0.01) but the number of osteoclasts per bone surface was unaffected in the male Dmp1-ER alpha(-/-) mice. The male Dmp1-ER alpha(-/-) mice had reduced expression of several osteoblast/osteocyte markers in bone, including Runx2, Sp7, and Dmp1 (P < 0.05). Gonadal intact Dmp1-ER alpha(-/-) female mice had no significant reduction in trabecular bone volume but ovariectomized Dmp1-ER alpha(-/-) female mice displayed an attenuated trabecular bone response to supraphysiological E2 treatment. Dmp1-ER alpha(-/-) mice of both genders had unaffected cortical bone. In conclusion, ER alpha in osteocytes regulates trabecular bone formation and thereby trabecular bone volume in male mice but it is dispensable for the trabecular bone in female mice and the cortical bone in both genders. We propose that the physiological trabecular bone-sparing effect of estrogen is mediated via ER alpha in osteocytes in males, but via ER alpha in osteoclasts in females.
  •  
7.
  • Wu, Jianyao, et al. (författare)
  • Androgen receptor SUMOylation regulates bone mass in male mice
  • 2019
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 479:January, s. 117-122
  • Tidskriftsartikel (refereegranskat)abstract
    • The crucial effects of androgens on the male skeleton are at least partly mediated via the androgen receptor (AR). In addition to hormone binding, the AR activity is regulated by post-translational modifications, including SUMOylation. SUMOylation is a reversible modification in which Small Ubiquitin-related MOdifier proteins (SUMOs) are attached to the AR and thereby regulate the activity of the AR and change its interactions with other proteins. To elucidate the importance of SUMOylation of AR for male bone metabolism, we used a mouse model devoid of the two AR SUMOylation sites (AR(SUM-);K381R and K500R are substituted). Six-month-old male AR(SUM-) mice displayed significantly reduced trabecular bone volume fraction in the distal metaphyseal region of femur compared with wild type (WT) mice (BV/TV, -19.1 +/- 4.9%, P < 0.05). The number of osteoblasts per bone perimeter was substantially reduced (-60.5 +/- 7.2%, P < 0.001) while no significant effect was observed on the number of osteoclasts in the trabecular bone of male AR(SUM-) mice. Dynamic histomorphometric analysis of trabecular bone revealed a reduced bone formation rate (-32.6 +/- 7.4%, P < 0.05) as a result of reduced mineralizing surface per bone surface in AR(SUM-) mice compared with WT mice (-24.3 +/- 3.6%, P < 0.001). Furthermore, cortical bone thickness in the diaphyseal region of femur was reduced in male AR(SUM-) mice compared with WT mice (-7.3 +/- 2.0%, P < 0.05). In conclusion, mice devoid of AR SUMOylation have reduced trabecular bone mass as a result of reduced bone formation. We propose that therapies enhancing AR SUMOylation might result in bone-specific anabolic effects with minimal adverse effects in other tissues.
  •  
8.
  • Bergström, I., et al. (författare)
  • Compressive loading of the murine tibia reveals site-specific micro-scale differences in adaptation and maturation rates of bone
  • 2017
  • Ingår i: Osteoporosis International. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 28:3, s. 1121-1131
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: Loading increases bone mass and strength in a site-specific manner; however, possible effects of loading on bone matrix composition have not been evaluated. Site-specific structural and material properties of mouse bone were analyzed on the macro- and micro/molecular scale in the presence and absence of axial loading. The response of bone to load is heterogeneous, adapting at molecular, micro-, and macro-levels. Introduction: Osteoporosis is a degenerative disease resulting in reduced bone mineral density, structure, and strength. The overall aim was to explore the hypothesis that changes in loading environment result in site-specific adaptations at molecular/micro- and macro-scale in mouse bone. Methods: Right tibiae of adult mice were subjected to well-defined cyclic axial loading for 2 weeks; left tibiae were used as physiologically loaded controls. The bones were analyzed with μCT (structure), reference point indentation (material properties), Raman spectroscopy (chemical), and small-angle X-ray scattering (mineral crystallization and structure). Results: The cranial and caudal sites of tibiae are structurally and biochemically different within control bones. In response to loading, cranial and caudal sites increase in cortical thickness with reduced mineralization (−14 and −3%, p < 0.01, respectively) and crystallinity (−1.4 and −0.3%, p < 0.05, respectively). Along the length of the loaded bones, collagen content becomes more heterogeneous on the caudal site and the mineral/collagen increases distally at both sites. Conclusion: Bone structure and composition are heterogeneous, finely tuned, adaptive, and site-specifically responsive at the micro-scale to maintain optimal function. Manipulation of this heterogeneity may affect bone strength, relative to specific applied loads.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 46

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy