SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tyagi V. K.) "

Sökning: WFRF:(Tyagi V. K.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Kumar, M., et al. (författare)
  • Frontier review on the propensity and repercussion of SARS-CoV-2 migration to aquatic environment
  • 2020
  • Ingår i: Journal of Hazardous Materials Letters. - : Elsevier BV. - 2666-9110. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased concern has recently emerged pertaining to the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aquatic environment during the current coronavirus disease 2019 (COVID-19) pandemic. While infectious SARS-CoV-2 has yet to be identified in the aquatic environment, the virus potentially enters the wastewater stream from patient excretions and a precautionary approach dictates evaluating transmission pathways to ensure public health and safety. Although enveloped viruses have presumed low persistence in water and are generally susceptible to inactivation by environmental stressors, previously identified enveloped viruses persist in the aqueous environment from days to several weeks. Our analysis suggests that not only the surface water, but also groundwater, represent SARS-CoV-2 control points through possible leaching and infiltrations of effluents from health care facilities, sewage, and drainage water. Most fecally transmitted viruses are highly persistent in the aquatic environment, and therefore, the persistence of SARS-CoV-2 in water is essential to inform its fate in water, wastewater and groundwater and subsequent human exposure.
  •  
4.
  • Aran, A., et al. (författare)
  • Evidence for local particle acceleration in the first recurrent galactic cosmic ray depression observed by Solar Orbiter : The ion event on 19 June 2020
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In mid-June 2020, the Solar Orbiter (SolO) mission reached its first perihelion at 0.51 au and started its cruise phase, with most of the in situ instruments operating continuously.Aims. We present the in situ particle measurements of the first proton event observed after the first perihelion obtained by the Energetic Particle Detector (EPD) suite on board SolO. The potential solar and interplanetary (IP) sources of these particles are investigated.Methods. Ion observations from similar to 20 keV to similar to 1 MeV are combined with available solar wind data from the Radio and Plasma Waves (RPW) instrument and magnetic field data from the magnetometer on board SolO to evaluate the energetic particle transport conditions and infer the possible acceleration mechanisms through which particles gain energy. We compare > 17-20 MeV ion count rate measurements for two solar rotations, along with the solar wind plasma data available from the Solar Wind Analyser (SWA) and RPW instruments, in order to infer the origin of the observed galactic cosmic ray (GCR) depressions.Results. The lack of an observed electron event and of velocity dispersion at various low-energy ion channels and the observed IP structure indicate a local IP source for the low-energy particles. From the analysis of the anisotropy of particle intensities, we conclude that the low-energy ions were most likely accelerated via a local second-order Fermi process. The observed GCR decrease on 19 June, together with the 51.8-1034.0 keV nuc(-1) ion enhancement, was due to a solar wind stream interaction region (SIR). The observation of a similar GCR decrease in the next solar rotation favours this interpretation and constitutes the first observation of a recurrent GCR decrease by SolO. The analysis of the recurrence times of this SIR suggests that it is the same SIR responsible for the He-4 events previously measured in April and May. Finally, we point out that an IP structure more complex than a common SIR cannot be discarded, mainly due to the lack of solar wind temperature measurements and the lack of a higher cadence of solar wind velocity observations.
  •  
5.
  • Kollhoff, A., et al. (författare)
  • The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (≲1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near-Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and an extreme ultraviolet (EUV) wave as well as a type II radio burst and multiple type III radio bursts.Aims. We present multi-spacecraft particle observations and place them in context with source observations from remote sensing instruments and discuss how such observations may further our understanding of particle acceleration and transport in this widespread event.Methods. Velocity dispersion analysis (VDA) and time shift analysis (TSA) were used to infer the particle release times at the Sun. Solar wind plasma and magnetic field measurements were examined to identify structures that influence the properties of the energetic particles such as their intensity. Pitch angle distributions and first-order anisotropies were analyzed in order to characterize the particle propagation in the interplanetary medium.Results. We find that during the 2020 November 29 SEP event, particles spread over more than 230° in longitude close to 1 AU. The particle onset delays observed at the different spacecraft are larger as the flare–footpoint angle increases and are consistent with those from previous STEREO observations. Comparing the timing when the EUV wave intersects the estimated magnetic footpoints of each spacecraft with particle release times from TSA and VDA, we conclude that a simple scenario where the particle release is only determined by the EUV wave propagation is unlikely for this event. Observations of anisotropic particle distributions at SolO, Wind, and STEREO-A do not rule out that particles are injected over a wide longitudinal range close to the Sun. However, the low values of the first-order anisotropy observed by near-Earth spacecraft suggest that diffusive propagation processes are likely involved.
  •  
6.
  • Allen, R. C., et al. (författare)
  • Energetic ions in the Venusian system : Insights from the first Solar Orbiter flyby
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Solar Orbiter flyby of Venus on 27 December 2020 allowed for an opportunity to measure the suprathermal to energetic ions in the Venusian system over a large range of radial distances to better understand the acceleration processes within the system and provide a characterization of galactic cosmic rays near the planet. Bursty suprathermal ion enhancements (up to similar to 10 keV) were observed as far as similar to 50R(V) downtail. These enhancements are likely related to a combination of acceleration mechanisms in regions of strong turbulence, current sheet crossings, and boundary layer crossings, with a possible instance of ion heating due to ion cyclotron waves within the Venusian tail. Upstream of the planet, suprathermal ions are observed that might be related to pick-up acceleration of photoionized exospheric populations as far as 5R(V) upstream in the solar wind as has been observed before by missions such as Pioneer Venus Orbiter and Venus Express. Near the closest approach of Solar Orbiter, the Galactic cosmic ray (GCR) count rate was observed to decrease by approximately 5 percent, which is consistent with the amount of sky obscured by the planet, suggesting a negligible abundance of GCR albedo particles at over 2 R-V. Along with modulation of the GCR population very close to Venus, the Solar Orbiter observations show that the Venusian system, even far from the planet, can be an effective accelerator of ions up to similar to 30 keV. This paper is part of a series of the first papers from the Solar Orbiter Venus flyby.
  •  
7.
  • Kumar, R. R., et al. (författare)
  • Effect of surfactant on functionalized multi-walled carbon nano tubes enhanced salt hydrate phase change material
  • 2022
  • Ingår i: Journal of Energy Storage. - : Elsevier BV. - 2352-152X. ; 55
  • Tidskriftsartikel (refereegranskat)abstract
    • Phase change materials (PCMs) are effective thermal energy storage materials; however, their low thermal conductivity nature tends to affect heat storage performance. Salt hydrate being inexpensive, incombustible and ensuring high phase change enthalpy, are highly attractive for energy storage. The potential of multi-walled carbon nanotubes (MWCNTs) in improving the thermophysical properties of salt hydrate PCMs makes it a hotspot of current research. Therefore, in this research article, MWCNTs and functionalized multi-walled carbon nanotubes (FMWCNTs) nanoparticles were dispersed with inorganic salt hydrate at different concentrations (0.3, 0.5, and 1.0 wt%), in the presence and absence of surfactant. The role of surfactant with salt hydrate PCM has been discussed extensively. The results obtained have ensured an enhancement in melting enthalpy of prepared composites by 4.92 %, and 28.5 % for 0.5 wt% MWCNT dispersed PCM (SHM0.5), and 0.5 wt% FMWCNT dispersed PCM (SHF0.5), respectively. Furthermore, the maximum thermal conductivity was enhanced by 50.0 % and 84.78 % for 0.5 wt% MWCNT dispersed PCM with surfactant (SHMS0.5), and SHF0.5 respectively, compared to salt hydrate PCM. From the improvement in thermal conductivity, light absorptance, thermal stability, latent heat, and chemical stability, it is evident that the prepared nanocomposite is a potential candidate for solar thermal energy storage applications.
  •  
8.
  • Jayakumar, O. D., et al. (författare)
  • Surfactant-induced enhanced room temperature ferromagnetism in Zn0.96Mn0.03Li0.01O nanoparticles : Prepared by solid-state pyrolitic reaction
  • 2007
  • Ingår i: Journal of Crystal Growth. - : Elsevier BV. - 0022-0248 .- 1873-5002. ; 307:2, s. 315-320
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the synthesis of nanoparticles of Zn0.96Mn0.03Li0.01O by a low-temperature solid-state pyrolitic reaction, followed by a surfactant-assisted calcination at 400 degrees C. The X-ray diffraction and transmission electron microscopy analyses showed the formation of impurity free nanocrystals of Mn doped Li co-cloped ZnO with wurtzite structure. XPS data revealed that Mn exists in + 2 oxidation state. DC magnetization measurements as a function of field and temperature showed enhanced room temperature ferromagnetism for the surfactant-treated Zn0:96Mn0.03Li0.01O. FMR signal observed in the EPR spectrum further confirmed its ferromagnetic nature.
  •  
9.
  • An, A. K., et al. (författare)
  • Clean Energy and Resource Recovery : Wastewater Treatment Plants as Biorefineries, Volume 2
  • 2021
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity. As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (15)
bok (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Vecchio, A. (3)
Kumar, M (3)
Martin, C (3)
Evans, V (3)
Persson, Clas (3)
Singh, S (3)
visa fler...
O'Brien, H (3)
Kulkarni, S. R. (3)
Khotyaintsev, Yuri V ... (3)
Seifert, H. (3)
Maksimovic, M. (3)
Allen, R. C. (3)
Cernuda, I (3)
Berger, L. (3)
Xu, Z. G. (3)
von Forstner, J. L. ... (3)
Rodriguez-Pacheco, J ... (3)
Wimmer-Schweingruber ... (3)
Ho, G. C. (3)
Mason, G. M. (3)
Angelini, V (3)
Boden, S. (3)
Eldrum, S. (3)
Lara, F. Espinosa (3)
Gomez-Herrero, R. (3)
Kollhoff, A. (3)
Lees, W. J. (3)
Ravanbakhsh, A. (3)
Wang, Mei (2)
Kominami, Eiki (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
De Milito, Angelo (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Harris, James (2)
Andrews, G. B. (2)
Bale, S. D. (2)
Boettcher, S. , I (2)
Kuehl, P. (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (8)
Karolinska Institutet (4)
Uppsala universitet (3)
Lunds universitet (3)
Göteborgs universitet (2)
Stockholms universitet (2)
visa fler...
Linköpings universitet (2)
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Teknik (4)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy