SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tzalenchuk Alexander) "

Sökning: WFRF:(Tzalenchuk Alexander)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alexander-Webber, J. A., et al. (författare)
  • Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.
  •  
2.
  • Alexander-Webber, J. A., et al. (författare)
  • Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene
  • 2013
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 111:9, s. e096601-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the phase space defined by the quantum Hall effect breakdown in polymer gated epitaxial graphene on SiC (SiC/G) as a function of temperature, current, carrier density, and magnetic fields up to 30 T. At 2 K, breakdown currents (Ic) almost 2 orders of magnitude greater than in GaAs devices are observed. The phase boundary of the dissipationless state (ρxx=0) shows a [1-(T/Tc)2] dependence and persists up to Tc>45  K at 29 T. With magnetic field Ic was found to increase ∝B3/2 and Tc∝B2. As the Fermi energy approaches the Dirac point, the ν=2 quantized Hall plateau appears continuously from fields as low as 1 T up to at least 19 T due to a strong magnetic field dependence of the carrier density.
  •  
3.
  • Baker, A M R, et al. (författare)
  • Energy loss rates of hot Dirac fermions in epitaxial, exfoliated, and CVD graphene
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X .- 2469-9950 .- 2469-9969. ; 87:4, s. 045414-
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy loss rates for hot carriers in graphene have been measured using graphene produced by epitaxial growth on SiC, exfoliation, and chemical vapor deposition (CVD). It is shown that the temperature dependence of the energy loss rates measured with high-field damped Shubnikov-de Haas oscillations and the temperature dependence of the weak localization peak close to zero field correlate well, with the high-field measurements understating the energy loss rates by similar to 40% compared to the low-field results. The energy loss rates for all graphene samples follow a universal scaling of T-e(4) at low temperatures and depend weakly on carrier density proportional to n(-1/2), evidence for enhancement of the energy loss rate due to disorder in CVD samples.
  •  
4.
  • Baker, A M R, et al. (författare)
  • Weak localization scattering lengths in epitaxial, and CVD graphene
  • 2012
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X .- 2469-9950 .- 2469-9969. ; 86:23, s. 235441-
  • Tidskriftsartikel (refereegranskat)abstract
    • Weak localization in graphene is studied as a function of carrier density in the range from 1 x 10(11) cm(-2) to 1.43 x 10(13) cm(-2) using devices produced by epitaxial growth onto SiC and CVD growth on thin metal film. The magnetic field dependent weak localization is found to be well fitted by theory, which is then used to analyze the dependence of the scattering lengths L-phi, L-i, and L-* on carrier density. We find no significant carrier dependence for L-phi, a weak decrease for L-i with increasing carrier density just beyond a large standard error, and a n(-1/4) dependence for L-*. We demonstrate that currents as low as 0.01 nA are required in smaller devices to avoid hot-electron artifacts in measurements of the quantum corrections to conductivity. DOI: 10.1103/PhysRevB.86.235441
  •  
5.
  • Chua, C., et al. (författare)
  • Observation of Coulomb blockade in nanostructured epitaxial bilayer graphene on SiC
  • 2017
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 119, s. 426-430
  • Tidskriftsartikel (refereegranskat)abstract
    • We study electron transport in nanostructures patterned in bilayer graphene patches grown epitaxially on SiC as a function of doping, magnetic field, and temperature. Away from charge neutrality transport is only weakly modulated by changes in carrier concentration induced by a local side-gate. At low n-type doping close to charge neutrality, electron transport resembles that in exfoliated graphene nanoribbons and is well described by tunnelling of single electrons through a network of Coulomb-blockaded islands. Under the influence of an external magnetic field, Coulomb blockade resonances fluctuate around an average energy and the gap shrinks as a function of magnetic field. At charge neutrality, however, conduction is less insensitive to external magnetic fields. In this regime we also observe a stronger suppression of the conductance below T*, which we interpret as a sign of broken interlayer symmetry or strong fluctuations in the edge/potential disorder.
  •  
6.
  • de Graaf, Sebastian Erik, 1986, et al. (författare)
  • Quantifying dynamics and interactions of individual spurious low-energy fluctuators in superconducting circuits
  • 2021
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 103:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the nature and dynamics of material defects in superconducting circuits is of paramount importance for improving qubit coherence and parameter stability and much needed for implementing large-scale quantum computing. Here we present measurements on individual highly coherent environmental two-level systems (TLS). We trace the spectral diffusion of specific TLS and demonstrate that it originates from the TLS coupling to a small number of low energy incoherent fluctuators. From the analysis of these fluctuations, we access the relevant parameters of low energy fluctuators: Dipole moments, switching energies, and, more importantly, interaction energies. Our approach opens up the possibility of deducing the macroscopic observables in amorphous glassy media from direct measurements of local fluctuator dynamics at the microscopic level- A route towards substantiating commonly accepted, but so far phenomenological, models for the decohering environment.
  •  
7.
  • de Graaf, Sebastian Erik, 1986, et al. (författare)
  • Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Noise and decoherence due to spurious two-level systems located at material interfaces are long-standing issues for solid-state quantum devices. Efforts to mitigate the effects of two-level systems have been hampered by a lack of knowledge about their chemical and physical nature. Here, by combining dielectric loss, frequency noise and on-chip electron spin resonance measurements in superconducting resonators, we demonstrate that desorption of surface spins is accompanied by an almost tenfold reduction in the charge-induced frequency noise in the resonators. These measurements provide experimental evid ence that simultaneously reveals the chemical signatures of adsorbed magnetic moments and highlights their role in generating charge noise in solid-state quantum devices.
  •  
8.
  • He, Hans, et al. (författare)
  • Polymer-encapsulated molecular doped epigraphene for quantum resistance metrology
  • 2019
  • Ingår i: Metrologia. - : Institute of Physics Publishing. - 0026-1394 .- 1681-7575. ; 56:4
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the aspirations of quantum metrology is to deliver primary standards directly to end-users thereby significantly shortening the traceability chains and enabling more accurate products. Epitaxial graphene grown on silicon carbide (epigraphene) is known to be a viable candidate for a primary realisation of a quantum Hall resistance standard, surpassing conventional semiconductor two-dimensional electron gases, such as those based on GaAs, in terms of performance at higher temperatures and lower magnetic fields. The bottleneck in the realisation of a turn-key quantum resistance standard requiring minimum user intervention has so far been the need to fine-tune the carrier density in this material to fit the constraints imposed by a simple cryo-magnetic system. Previously demonstrated methods, such as via photo-chemistry or corona discharge, require application prior to every cool-down as well as specialist knowledge and equipment. To this end we perform metrological evaluation of epigraphene with carrier density tuned by a recently reported permanent molecular doping technique. Measurements at two National Metrology Institutes confirm accurate resistance quantisation below 5n-1. Furthermore, samples show no significant drift in carrier concentration and performance on multiple thermal cycles over three years. This development paves the way for dissemination of primary resistance standards based on epigraphene
  •  
9.
  • Huang, J., et al. (författare)
  • Hot carrier relaxation of Dirac fermions in bilayer epitaxial graphene
  • 2015
  • Ingår i: Journal of Physics Condensed Matter. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 27:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy relaxation of hot Dirac fermions in bilayer epitaxial graphene is experimentally investigated by magnetotransport measurements on Shubnikov-de Haas oscillations and weak localization. The hot-electron energy loss rate is found to follow the predicted Bloch-Gruneisen power-law behaviour of T-4 at carrier temperatures from 1.4K up to similar to 100 K, due to electron-acoustic phonon interactions with a deformation potential coupling constant of 22 eV. A carrier density dependence n(e)(-1.5) in the scaling of the T-4 power law is observed in bilayer graphene, in contrast to the n(e)(-0.5) dependence in monolayer graphene, leading to a crossover in the energy loss rate as a function of carrier density between these two systems. The electron-phonon relaxation time in bilayer graphene is also shown to be strongly carrier density dependent, while it remains constant for a wide range of carrier densities in monolayer graphene. Our results and comparisons between the bilayer and monolayer exhibit a more comprehensive picture of hot carrier dynamics in graphene systems.
  •  
10.
  • Huang, J., et al. (författare)
  • Physics of a disordered Dirac point in epitaxial graphene from temperature-dependent magnetotransport measurements
  • 2015
  • Ingår i: Physical Review B - Condensed Matter and Materials Physics. - : American Physical Society. - 2469-9950 .- 2469-9969 .- 1098-0121 .- 1550-235X. ; 92:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a study of disorder effects on epitaxial graphene in the vicinity of the Dirac point by magnetotransport. Hall effect measurements show that the carrier density increases quadratically with temperature, in good agreement with theoretical predictions which take into account intrinsic thermal excitation combined with electron-hole puddles induced by charged impurities. We deduce disorder strengths in the range 10.2-31.2 meV, depending on the sample treatment. We investigate the scattering mechanisms and estimate the impurity density to be 3.0-9.1x10(10) cm(-2) for our samples. A scattering asymmetry for electrons and holes is observed and is consistent with theoretical calculations for graphene on SiC substrates. We also show that the minimum conductivity increases with increasing disorder strength, in good agreement with quantum-mechanical numerical calculations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy