SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Uauy R.) "

Search: WFRF:(Uauy R.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zhang, X., et al. (author)
  • Human total, basal and activity energy expenditures are independent of ambient environmental temperature
  • 2022
  • In: iScience. - : Elsevier Inc.. - 2589-0042. ; 25:8
  • Journal article (peer-reviewed)abstract
    • Lower ambient temperature (Ta) requires greater energy expenditure to sustain body temperature. However, effects of Ta on human energetics may be buffered by environmental modification and behavioral compensation. We used the IAEA DLW database for adults in the USA (n = 3213) to determine the effect of Ta (−10 to +30°C) on TEE, basal (BEE) and activity energy expenditure (AEE) and physical activity level (PAL). There were no significant relationships (p > 0.05) between maximum, minimum and average Ta and TEE, BEE, AEE and PAL. After adjustment for fat-free mass, fat mass and age, statistically significant (p < 0.01) relationships between TEE, BEE and Ta emerged in females but the effect sizes were not biologically meaningful. Temperatures inside buildings are regulated at 18–25°C independent of latitude. Hence, adults in the US modify their environments to keep TEE constant across a wide range of external ambient temperatures.
  •  
2.
  • Kaput, J, et al. (author)
  • The case for strategic international alliances to harness nutritional genomics for public and personal health
  • 2005
  • In: The British journal of nutrition. - : Cambridge University Press (CUP). - 0007-1145 .- 1475-2662. ; 94:5, s. 623-632
  • Journal article (peer-reviewed)abstract
    • Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene–nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient–genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countries.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view