SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uchihori Yukio) "

Sökning: WFRF:(Uchihori Yukio)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kodaira, S., et al. (författare)
  • On the use of CR-39 PNTD with AFM analysis in measuring proton-induced target fragmentation particles
  • 2015
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. - : Elsevier BV. - 0168-583X. ; 349, s. 163-168
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to energy loss by ionization process, protons of energy >similar to 50 MeV, such as those used in proton radiotherapy, can undergo nuclear interactions with nuclei of Z > 1, resulting in the production, of short range (<20 gm), high-LET (linear energy transfer) target fragment particles. One of the few methods to detect these short-range particles is by means of CR-39 plastic nuclear track detector (PNTD) analyzed with an atomic force microscope (AFM). However, due to the LET-dependent angular sensitivity of CR-39 PNTD, multiple detectors exposed at a range of incident angles to the primary proton beam, must be analyzed in order to accurately determine the LET spectrum, absorbed dose and dose equivalent. The LET spectrum of 160 MeV proton-induced secondary particles was experimentally measured with CR-39 PNTDs, which were exposed at six different incident angles to take into account the intrinsic sensitivity of the critical angle for track registration. The irradiated detectors were chemically processed to remove a 1 gm thick volume of CR-39 PNTD. The measured LET range of short range tracks was from 15 key/mu m up to 1.5 MeV/mu m. The absorbed dose contribution (D-s/D-p) from secondary particles to primary proton dose was similar to 1%, while the dose equivalent contribution (H-s/D-p) was found to be similar to 20%. Analysis of CR-39 PNTD by AFM yielded similar to 60% higher value for absorbed dose compared to standard optical microscopy analysis.
  •  
2.
  •  
3.
  • Ploc, Ondrej, et al. (författare)
  • Poster session 11: Space dosimetry and environment dosimetry measurements using timepix in mixed radiation fields induced by heavy ions; comparison with standard dosimetry methods
  • 2014
  • Ingår i: Journal of Radiation Research. - : Oxford University Press (OUP). - 0449-3060 .- 1349-9157. ; 55, s. i141-i142
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective of our research was to explore capabilities of Timepix for its use as a single dosemeter and LET spectrometer in mixed radiation fields created by heavy ions. We exposed it to radiation field (i) at heavy ion beams at HIMAC, Chiba, Japan, (ii) in the CERN's high-energy reference field (CERF) facility at Geneva, France/Switzerland, (iii) in the exposure room of the proton therapy laboratory at JINR, Dubna, Russia, and (iv) onboard aircraft. We compared the absolute values of dosimetric quantities obtained with Timepix and with other dosemeters and spectrometers like tissue-equivalent proportional counter (TEPC) Hawk, silicon detector Liulin, and track-etched detectors (TEDs). © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Therapeutic Radiology and Oncology.
  •  
4.
  • Sihver, Lembit, 1962, et al. (författare)
  • Radiation environment onboard spacecraft at LEO and in deep space
  • 2016
  • Ingår i: IEEE Aerospace Conference Proceedings. - 1095-323X. - 9781467376761 ; 2016-June, s. Art. no 7500765-
  • Konferensbidrag (refereegranskat)abstract
    • It is well known that outside the Earth's protective atmosphere and magnetosphere, the environment is very harsh and unfriendly for any living organism, due to the micro gravity, lack of oxygen and protection from high energetic ionizing cosmic radiation, as well as from powerful solar energetic particles (SEPs). The space radiation exposure leads to increased health risks, including tumor lethality, circulatory diseases and damages on the central nervous systems. In case of SEP events, exposures of spacecraft crews may be lethal. Space radiation hazards are therefore recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a limiting factor since current protection limits might be approached or even exceeded. Better risk assessment requires knowledge of the radiation quality, as well as equivalent doses in critical radiosensitive organs, and different risk coefficient for different radiation caused illnesses and diseases must be developed. The use of human phantoms, simulating an astronaut's body, provides detailed information of the depth-dose distributions, and radiation quality, inside the human body. In this paper we will therefore review the major phantom experiments performed at Low Earth Orbits (LEO) [1]. However, the radiation environment in deep space is different from LEO. Based on fundamental physics principles, it is clear that hydrogen rich, light and neutron deficient materials have the best shielding properties against Galactic Cosmic Rays (GCR) [2,3]. It has also been shown [4,5] that water shielding material can reduce the dose from Trapped Particles (TP), the low energetic part of GCR, and from low energetic SEP events. However, the total dose from GCR, for moderate shielding thicknesses, is actually increasing when increasing the shielding thickness due to the buildup of secondary fragments, protons and neutrons [5]. Examples of promising shielding materials are polyethylene and hydrogen rich carbon composite materials. Nevertheless, not even these shielding materials have been proven to significantly reduce the radiation health risks compared to e.g. aluminum shielding due to the high energetic GCR particles, the created fragments, and the large radiobiological uncertainties in the GCR risk projection [6,7]. A better understanding of the radiobiological effects of GCR are therefore needed, as well as better cancer risk models, and models for estimating the risks for circulatory diseases and damages on the central nervous systems. To reduce the health risks, a combination of passive and active shielding might be a realistic option for long term interplanetary missions, in combination with means to minimizing the time in deep space and to perform the missions during solar maximum to minimize the flux of GCR. Suitable radioprotectors, e.g. agents that act directly to protect cellular component and oppose the action of radiation induced free radicals, and reactive oxygen species, as well as radiomitigators, e.g. agents that accelerate post-radiation recovery and prevent complications, could also be developed. There might also be a need to accept an increased risk for carcinogenesis than what is stated by current dose limits.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy