SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uddin Md Mesbah) "

Sökning: WFRF:(Uddin Md Mesbah)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agrawal, Mridul, et al. (författare)
  • TET2-mutant clonal hematopoiesis and risk of gout
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 140:10, s. 1094-1103
  • Tidskriftsartikel (refereegranskat)abstract
    • Gout is a common inflammatory arthritis caused by precipitation of monosodium urate (MSU) crystals in individuals with hyperuricemia. Acute flares are accompanied by secretion of proinflammatory cytokines, including interleukin-1β (IL-1β). Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related condition predisposing to hematologic cancers and cardiovascular disease. CHIP is associated with elevated IL-1β, thus we investigated CHIP as a risk factor for gout. To test the clinical association between CHIP and gout, we analyzed whole exome sequencing data from 177 824 individuals in the MGB Biobank (MGBB) and UK Biobank (UKB). In both cohorts, the frequency of gout was higher among individuals with CHIP than without CHIP (MGBB, CHIP with variant allele fraction [VAF] ≥2%: odds ratio [OR], 1.69; 95% CI, 1.09-2.61; P = .0189; UKB, CHIP with VAF ≥10%: OR, 1.25; 95% CI, 1.05-1.50; P = .0133). Moreover, individuals with CHIP and a VAF ≥10% had an increased risk of incident gout (UKB: hazard ratio [HR], 1.28; 95% CI, 1.06-1.55; P = .0107). In murine models of gout pathogenesis, animals with Tet2 knockout hematopoietic cells had exaggerated IL-1β secretion and paw edema upon administration of MSU crystals. Tet2 knockout macrophages elaborated higher levels of IL-1β in response to MSU crystals in vitro, which was ameliorated through genetic and pharmacologic Nlrp3 inflammasome inhibition. These studies show that TET2-mutant CHIP is associated with an increased risk of gout in humans and that MSU crystals lead to elevated IL-1β levels in Tet2 knockout murine models. We identify CHIP as an amplifier of NLRP3-dependent inflammatory responses to MSU crystals in patients with gout.
  •  
2.
  • Bhattacharya, Romit, et al. (författare)
  • Clonal Hematopoiesis Is Associated with Higher Risk of Stroke
  • 2022
  • Ingår i: Stroke. - 0039-2499. ; 29:2, s. 788-797
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: Clonal hematopoiesis of indeterminate potential (CHIP) is a novel age-related risk factor for cardiovascular disease-related morbidity and mortality. The association of CHIP with risk of incident ischemic stroke was reported previously in an exploratory analysis including a small number of incident stroke cases without replication and lack of stroke subphenotyping. The purpose of this study was to discover whether CHIP is a risk factor for ischemic or hemorrhagic stroke. Methods: We utilized plasma genome sequence data of blood DNA to identify CHIP in 78 752 individuals from 8 prospective cohorts and biobanks. We then assessed the association of CHIP and commonly mutated individual CHIP driver genes (DNMT3A, TET2, and ASXL1) with any stroke, ischemic stroke, and hemorrhagic stroke. Results: CHIP was associated with an increased risk of total stroke (hazard ratio, 1.14 [95% CI, 1.03-1.27]; P=0.01) after adjustment for age, sex, and race. We observed associations with CHIP with risk of hemorrhagic stroke (hazard ratio, 1.24 [95% CI, 1.01-1.51]; P=0.04) and with small vessel ischemic stroke subtypes. In gene-specific association results, TET2 showed the strongest association with total stroke and ischemic stroke, whereas DMNT3A and TET2 were each associated with increased risk of hemorrhagic stroke. Conclusions: CHIP is associated with an increased risk of stroke, particularly with hemorrhagic and small vessel ischemic stroke. Future studies clarifying the relationship between CHIP and subtypes of stroke are needed.
  •  
3.
  • Bhattacharya, Romit, et al. (författare)
  • Risk factors for clonal hematopoiesis of indeterminate potential in people with HIV : a report from the REPRIEVE trial
  • 2024
  • Ingår i: Blood Advances. - 2473-9529. ; 8:4, s. 959-967
  • Tidskriftsartikel (refereegranskat)abstract
    • Clonal hematopoiesis of indeterminate potential (CHIP), the clonal expansion of myeloid cells with leukemogenic mutations, results in increased coronary artery disease (CAD) risk. CHIP is more prevalent among people with HIV (PWH), but the risk factors are unknown. CHIP was identified among PWH in REPRIEVE (Randomized Trial to Prevent Vascular Events in HIV) using whole-exome sequencing. Logistic regression was used to associate sociodemographic factors and HIV-specific factors with CHIP adjusting for age, sex, and smoking status. In the studied global cohort of 4486 PWH, mean age was 49.9 (standard deviation [SD], 6.4) years; 1650 (36.8%) were female; and 3418 (76.2%) were non-White. CHIP was identified in 223 of 4486 (4.97%) and in 38 of 373 (10.2%) among those aged ≥60 years. Age (odds ratio [OR], 1.07; 95% confidence interval [CI], 1.05-1.09; P < .0001) and smoking (OR, 1.37; 95% CI, 1.14-1.66; P < .001) associated with increased odds of CHIP. Globally, participants outside of North America had lower odds of CHIP including sub- Saharan Africa (OR, 0.57; 95% CI, 0.4-0.81; P = .0019), South Asia (OR, 0.45; 95% CI, 0.23-0.80; P = .01), and Latin America/Caribbean (OR, 0.56; 95% CI, 0.34-0.87; P = .014). Hispanic/Latino ethnicity (OR, 0.38; 95% CI, 0.23-0.54; P = .002) associated with significantly lower odds of CHIP. Among HIV-specific factors, CD4 nadir <50 cells/mm3 associated with a 1.9-fold (95% CI, 1.21-3.05; P = .006) increased odds of CHIP, with the effect being significantly stronger among individuals with short duration of antiretroviral therapy (ART; OR, 4.15; 95% CI, 1.51-11.1; P = .005) (Pinteraction= .0492). Among PWH at low-to-moderate CAD risk on stable ART, smoking, CD4 nadir, North American origin, and non-Hispanic ethnicity associated with increased odds of CHIP.
  •  
4.
  • Gumuser, Esra D., et al. (författare)
  • Clonal Hematopoiesis of Indeterminate Potential Predicts Adverse Outcomes in Patients With Atherosclerotic Cardiovascular Disease
  • 2023
  • Ingår i: Journal of the American College of Cardiology. - 0735-1097. ; 81:20, s. 1996-2009
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Clonal hematopoiesis of indeterminate potential (CHIP)—the age-related clonal expansion of blood stem cells with leukemia-associated mutations—is a novel cardiovascular risk factor. Whether CHIP remains prognostic in individuals with established atherosclerotic cardiovascular disease (ASCVD) is less clear. Objectives: This study tested whether CHIP predicts adverse outcomes in individuals with established ASCVD. Methods: Individuals aged 40 to 70 years from the UK Biobank with established ASCVD and available whole-exome sequences were analyzed. The primary outcome was a composite of ASCVD events and all-cause mortality. Associations of any CHIP (variant allele fraction ≥2%), large CHIP clones (variant allele fraction ≥10%), and the most commonly mutated driver genes (DNMT3A, TET2, ASXL1, JAK2, PPM1D/TP53 [DNA damage repair genes], and SF3B1/SRSF2/U2AF1 [spliceosome genes]) with incident outcomes were compared using unadjusted and multivariable-adjusted Cox regression. Results: Of 13,129 individuals (median age: 63 years) included, 665 (5.1%) had CHIP. Over a median follow-up of 10.8 years, any CHIP and large CHIP at baseline were associated with adjusted HRs of 1.23 (95% CI: 1.10-1.38; P < 0.001) and 1.34 (95% CI: 1.17-1.53; P < 0.001), respectively, for the primary outcome. TET2 and spliceosome CHIP, especially large clones, were most strongly associated with adverse outcomes (large TET2 CHIP: HR: 1.89; 95% CI: 1.40-2.55; P <0.001; large spliceosome CHIP: HR: 3.02; 95% CI: 1.95-4.70; P < 0.001). Conclusions: CHIP is independently associated with adverse outcomes in individuals with established ASCVD, with especially high risks observed in TET2 and SF3B1/SRSF2/U2AF1 CHIP.
  •  
5.
  • Niroula, Abhishek, et al. (författare)
  • Distinction of lymphoid and myeloid clonal hematopoiesis
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:11, s. 1921-1927
  • Tidskriftsartikel (refereegranskat)abstract
    • Clonal hematopoiesis (CH) results from somatic genomic alterations that drive clonal expansion of blood cells. Somatic gene mutations associated with hematologic malignancies detected in hematopoietic cells of healthy individuals, referred to as CH of indeterminate potential (CHIP), have been associated with myeloid malignancies, while mosaic chromosomal alterations (mCAs) have been associated with lymphoid malignancies. Here, we analyzed CHIP in 55,383 individuals and autosomal mCAs in 420,969 individuals with no history of hematologic malignancies in the UK Biobank and Mass General Brigham Biobank. We distinguished myeloid and lymphoid somatic gene mutations, as well as myeloid and lymphoid mCAs, and found both to be associated with risk of lineage-specific hematologic malignancies. Further, we performed an integrated analysis of somatic alterations with peripheral blood count parameters to stratify the risk of incident myeloid and lymphoid malignancies. These genetic alterations can be readily detected in clinical sequencing panels and used with blood count parameters to identify individuals at high risk of developing hematologic malignancies.
  •  
6.
  • Saadatagah, Seyedmohammad, et al. (författare)
  • Clonal Hematopoiesis Risk Score and All-Cause and Cardiovascular Mortality in Older Adults
  • 2024
  • Ingår i: JAMA Network Open. - 2574-3805. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Clonal hematopoiesis (CH) with acquired pathogenic variants in myeloid leukemia driver genes is common in older adults but of unknown prognostic value. Objective: To investigate the prevalence of CH and the utility of the CH risk score (CHRS) in estimating all-cause and disease-specific mortality in older adults with CH. Design, Setting, and Participants: This population-based prospective cohort study involved community-dwelling older adults (aged 67-90 years) without hematologic malignant neoplasms (HMs) who were participants in the Atherosclerosis Risk in Communities Visit 5 at 4 US centers: Forsyth County, North Carolina; Jackson, Mississippi; Minneapolis, Minnesota; and Washington County, Maryland. Samples were collected from 2011 to 2013, sequencing was performed in 2022, and data analysis was completed in 2023. Exposure: The exposure was a diagnosis of CH. CHRS scores (calculated using 8 demographic, complete blood cell count, and molecular factors) were used to categorize individuals with CH into low-risk (CHRS ≤9.5), intermediate-risk (CHRS >9.5 to <12.5), and high-risk (CHRS ≥12.5) groups. Main Outcomes and Measures: The primary outcome was all-cause mortality, and secondary outcomes were HM mortality, cardiovascular disease mortality, and death from other causes. Results: Among 3871 participants without a history of HM (mean [SD] age, 75.7 [5.2] years; 2264 [58.5%] female individuals; 895 [23.1%] Black individuals; 2976 White individuals [76.9%]), 938 (24.2%) had CH. According to the CHRS, 562 (59.9%) were low risk, 318 (33.9%) were intermediate risk, and 58 (6.2%) were high risk. During a median (IQR) follow-up of 7.13 (5.63-7.78) years, 570 participants without CH (19.4%) and 254 participants with CH (27.1%) died. Mortality by CHRS risk group was 128 deaths (22.8%) for low risk, 93 (29.2%) for intermediate risk, and 33 (56.9%) for high risk. By use of multivariable competing risk regression, subdistribution hazard ratios (sHRs) for all-cause mortality were 1.08 (95% CI, 0.89-1.31; P =.42) for low-risk CH, 1.12 (95% CI, 0.89-1.41; P =.31) for intermediate-risk CH, and 2.52 (95% CI, 1.72-3.70; P <.001) for high-risk CH compared with no CH. Among individuals in the high-risk CH group, the sHR of death from HM (6 deaths [10.3%]) was 25.58 (95% CI, 7.55-86.71; P <.001) and that of cardiovascular death (12 deaths [20.7%]) was 2.91 (95% CI, 1.55-5.47; P <.001). Conclusions and Relevance: In this cohort study, the CHRS was associated with all-cause, HM-related, and cardiovascular disease mortality in older adults with CH and may be useful in shared decision-making to guide clinical management and identify appropriate candidates for clinical trials.
  •  
7.
  • Schuermans, Art, et al. (författare)
  • Birth Weight Is Associated With Clonal Hematopoiesis of Indeterminate Potential and Cardiovascular Outcomes in Adulthood
  • 2023
  • Ingår i: Journal of the American Heart Association. - 2047-9980. ; 12:13
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: High and low birth weight are independently associated with increased cardiovascular disease risk in adulthood. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related clonal expansion of hematopoietic cells with preleu-kemic somatic mutations, predicts incident cardiovascular disease independent of traditional cardiovascular risk factors. Whether birth weight predicts development of CHIP later in life is unknown. METHODS AND RESULTS: A total of 221 047 adults enrolled in the UK Biobank with whole exome sequences and self-reported birth weight were analyzed. Of those, 22 030 (11.5%) had low (<2.5 kg) and 29 292 (14.7%) high birth weight (>4.0 kg). CHIP prevalence was higher among participants with low (6.0%, P=0.049) and high (6.3%, P<0.001) versus normal birth weight (5.7%, ref.). Multivariable-adjusted logistic regression analyses demonstrated that each 1-kg increase in birth weight was associated with a 3% increased risk of CHIP (odds ratio, 1.03 [95% CI, 1.00–1.06]; P=0.04), driven by a stronger association ob-served between birth weight and DNMT3A CHIP (odds ratio, 1.04 per 1-kg increase [95% CI, 1.01–1.08]; P=0.02). Mendelian randomization analyses supported a causal relationship of longer gestational age at delivery with DNMT3A CHIP. Multivariable Cox regression demonstrated that CHIP was independently and additively associated with incident cardiovascular disease or death across birth weight groups, with highest absolute risks in those with CHIP plus high or low birth weight. CONCLUSIONS: Higher birth weight is associated with increased risk of developing CHIP in midlife, especially DNMT3A CHIP. These findings identify a novel risk factor for CHIP and provide insights into the relationships among early-life environment, CHIP, cancer, and cardiovascular disease.
  •  
8.
  • Schuermans, Art, et al. (författare)
  • Clonal haematopoiesis of indeterminate potential predicts incident cardiac arrhythmias
  • 2024
  • Ingår i: European Heart Journal. - 0195-668X. ; 45:10, s. 791-805
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Clonal haematopoiesis of indeterminate potential (CHIP), the age-related expansion of blood cells with preleukemic mutaAims tions, is associated with atherosclerotic cardiovascular disease and heart failure. This study aimed to test the association of CHIP with new-onset arrhythmias.Methods UK Biobank participants without prevalent arrhythmias were included. Co-primary study outcomes were supraventricular arrhythmias, bradyarrhythmias, and ventricular arrhythmias. Secondary outcomes were cardiac arrest, atrial fibrillation, and any arrhythmia. Associations of any CHIP [variant allele fraction (VAF) ≥ 2%], large CHIP (VAF ≥10%), and gene-specific CHIP subtypes with incident arrhythmias were evaluated using multivariable-adjusted Cox regression. Associations of CHIP with myocardial interstitial fibrosis [T1 measured using cardiac magnetic resonance (CMR)] were also tested. Results This study included 410 702 participants [CHIP: n = 13 892 (3.4%); large CHIP: n = 9191 (2.2%)]. Any and large CHIP were associated with multi-variable-adjusted hazard ratios of 1.11 [95% confidence interval (CI) 1.04–1.18; P = .001] and 1.13 (95% CI 1.05–1.22; P = .001) for supraventricular arrhythmias, 1.09 (95% CI 1.01–1.19; P = .031) and 1.13 (95% CI 1.03–1.25; P = .011) for bradyarrhythmias, and 1.16 (95% CI, 1.00–1.34; P = .049) and 1.22 (95% CI 1.03–1.45; P = .021) for ventricular arrhythmias, respectively. Associations were independent of coronary artery disease and heart failure. Associations were also heterogeneous across arrhythmia subtypes and strongest for cardiac arrest. Gene-specific analyses revealed an increased risk of arrhythmias across driver genes other than DNMT3A. Large CHIP was associated with 1.31-fold odds (95% CI 1.07–1.59; P = .009) of being in the top quintile of myocardial fibrosis by CMR. Conclusions CHIP may represent a novel risk factor for incident arrhythmias, indicating a potential target for modulation towards arrhythmia prevention and treatment.
  •  
9.
  • Tian, Ruiyi, et al. (författare)
  • Clonal Hematopoiesis and Risk of Incident Lung Cancer
  • 2023
  • Ingår i: Journal of clinical oncology : official journal of the American Society of Clinical Oncology. - 0732-183X. ; 41:7, s. 1423-1433
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To prospectively examine the association between clonal hematopoiesis (CH) and subsequent risk of lung cancer. METHODS: Among 200,629 UK Biobank (UKBB) participants with whole-exome sequencing, CH was identified in a nested case-control study of 832 incident lung cancer cases and 3,951 controls (2006-2019) matched on age and year at blood draw, sex, race, and smoking status. A similar nested case-control study (141 cases/652 controls) was conducted among 27,975 participants with whole-exome sequencing in the Mass General Brigham Biobank (MGBB, 2010-2021). In parallel, we compared CH frequency in published data from 5,003 patients with solid tumor (2,279 lung cancer) who had pretreatment blood sequencing performed through Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets. RESULTS: In UKBB, the presence of CH was associated with increased risk of lung cancer (cases: 12.5% v controls: 8.7%; multivariable-adjusted odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74). The association remained robust after excluding participants with chronic obstructive pulmonary disease. No significant interactions with known risk factors, including polygenic risk score and C-reactive protein, were identified. In MGBB, we observed similar enrichment of CH in lung cancer (cases: 15.6% v controls: 12.7%). The meta-analyzed OR (95% CI) of UKBB and MGBB was 1.35 (1.08 to 1.68) for CH overall and 1.61 (1.19 to 2.18) for variant allele frequencies ≥ 10%. In Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets, CH with a variant allele frequency ≥ 10% was enriched in pretreatment lung cancer compared with other tumors after adjusting for age, sex, and smoking (OR for lung v breast cancer: 1.61; 95% CI, 1.03 to 2.53). CONCLUSION: Independent of known risk factors, CH is associated with increased risk of lung cancer.
  •  
10.
  • Vlasschaert, Caitlyn, et al. (författare)
  • A practical approach to curate clonal hematopoiesis of indeterminate potential in human genetic data sets
  • 2023
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 141:18, s. 2214-2223
  • Tidskriftsartikel (refereegranskat)abstract
    • Clonal hematopoiesis of indeterminate potential (CHIP) is a common form of age-related somatic mosaicism that is associated with significant morbidity and mortality. CHIP mutations can be identified in peripheral blood samples that are sequenced using approaches that cover the whole genome, the whole exome, or targeted genetic regions; however, differentiating true CHIP mutations from sequencing artifacts and germ line variants is a considerable bioinformatic challenge. We present a stepwise method that combines filtering based on sequencing metrics, variant annotation, and population-based associations to increase the accuracy of CHIP calls. We apply this approach to ascertain CHIP in ∼550 000 individuals in the UK Biobank complete whole exome cohort and the All of Us Research Program initial whole genome release cohort. CHIP ascertainment on this scale unmasks recurrent artifactual variants and highlights the importance of specialized filtering approaches for several genes, including TET2 and ASXL1. We show how small changes in filtering parameters can considerably increase CHIP misclassification and reduce the effect size of epidemiological associations. Our high-fidelity call set refines previous population-based associations of CHIP with incident outcomes. For example, the annualized incidence of myeloid malignancy in individuals with small CHIP clones is 0.03% per year, which increases to 0.5% per year among individuals with very large CHIP clones. We also find a significantly lower prevalence of CHIP in individuals of self-reported Latino or Hispanic ethnicity in All of Us, highlighting the importance of including diverse populations. The standardization of CHIP calling will increase the fidelity of CHIP epidemiological work and is required for clinical CHIP diagnostic assays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy