SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Udovic Terrence J.) "

Sökning: WFRF:(Udovic Terrence J.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hirscher, Michael, et al. (författare)
  • Materials for hydrogen-based energy storage - past, recent progress and future outlook
  • 2020
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388 .- 1873-4669. ; 827
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, the accelerating use of renewable energy sources, enabled by increased efficiencies and reduced costs, and driven by the need to mitigate the effects of climate change, has significantly increased research in the areas of renewable energy production, storage, distribution and end-use. Central to this discussion is the use of hydrogen, as a clean, efficient energy vector for energy storage. This review, by experts of Task 32, Hydrogen-based Energy Storage of the International Energy Agency, Hydrogen TCP, reports on the development over the last 6 years of hydrogen storage materials, methods and techniques, including electrochemical and thermal storage systems. An overview is given on the background to the various methods, the current state of development and the future prospects. The following areas are covered; porous materials, liquid hydrogen carriers, complex hydrides, intermetallic hydrides, electrochemical storage of energy, thermal energy storage, hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage.
  •  
2.
  • Andersson, Mikael, 1988, et al. (författare)
  • Interplay of NH4+ and BH4- reorientational dynamics in NH4BH4
  • 2020
  • Ingår i: Physical Review Materials. - 2475-9953. ; 4:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The reorientational dynamics of ammonium borohydride (NH4BH4) was studied using quasielastic neutron scattering in the temperature interval from 10 to 240 K, which covers both the dynamically ordered and disordered polymorphs of NH4BH4. In the low-temperature (50 K) ordered polymorph of NH4BH4, analysis of the quasielastic neutron scattering data reveals that no reorientational dynamics is present within the probed timescale region of 0.1 to 100 ps. In the high-temperature (50 K) disordered polymorph, the analysis establishes the onset of NH4+ and BH4- dynamics at around 50 and 125 K, respectively. The relaxation time at 150 K for NH4+ is approximately 1 ps, while around 100 ps for BH4- . The NH4+ dynamics at temperatures below 125 K is associated with preferential tetrahedral tumbling motions, where each of the hydrogen atoms in the NH4+ tetrahedron can visit any of the four hydrogen sites, however, reorientations around a specific axis are more frequently occurring (C-2 or C3). At higher temperatures, the analysis does not exclude a possible evolution of the NH4+ dynamics from tetrahedral tumbling to either cubic tumbling, where the hydrogen atoms can visit any of the eight positions corresponding to the corners of a cube, or isotropic rotational diffusion, where the hydrogen atoms can visit any location on the surface of a sphere. The BH4- dynamics can be described as cubic tumbling. The difference in reorientational dynamics between the two ions is related to the difference of the local environment where the dynamically much slower BH4- anion imposes a noncubic environment on the NH4+ cation.
  •  
3.
  • Andersson, Mikael, 1986, et al. (författare)
  • Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB11H12 via Confinement within Nanoporous Silica
  • 2021
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:30, s. 16689-16699
  • Tidskriftsartikel (refereegranskat)abstract
    • Superionic phases of bulk anhydrous salts based on large cluster-like polyhedral (carba)borate anions are generally stable only well above room temperature, rendering them unsuitable as solid-state electrolytes in energy-storage devices that typically operate at close to room temperature. To unlock their technological potential, strategies are needed to stabilize these superionic properties down to subambient temperatures. One such strategy involves altering the bulk properties by confinement within nanoporous insulators. In the current study, the unique structural and ion dynamical properties of an exemplary salt, NaCB11H12, nanodispersed within porous, high-surface-area silica via salt-solution infiltration were studied by differential scanning calorimetry, X-ray powder diffraction, neutron vibrational spectroscopy, nuclear magnetic resonance, quasielastic neutron scattering, and impedance spectroscopy. Combined results hint at the formation of a nanoconfined phase that is reminiscent of the high-temperature superionic phase of bulk NaCB11H12, with dynamically disordered CB11H12-anions exhibiting liquid-like reorientational mobilities. However, in contrast to this high-temperature bulk phase, the nanoconfined NaCB11H12 phase with rotationally fluid anions persists down to cryogenic temperatures. Moreover, the high anion mobilities promoted fast-cation diffusion, yielding Na+ superionic conductivities of similar to 0.3 mS/cm at room temperature, with higher values likely attainable via future optimization. It is expected that this successful strategy for conductivity enhancement could be applied as well to other related polyhedral (carba)borate-based salts. Thus, these results present a new route to effectively utilize these types of superionic salts as solid-state electrolytes in future battery applications.
  •  
4.
  • Dimitrievska, Mirjana, et al. (författare)
  • Structural and Dynamical Properties of Potassium Dodecahydro-monocarba-closo-dodecaborate: KCB11H12
  • 2020
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 124:33, s. 17992-18002
  • Tidskriftsartikel (refereegranskat)abstract
    • MCB11H12 (M: Li, Na) dodecahydro-monocarba-closo-dodecaborate salt compounds are known to have stellar superionic Li+ and Na+ conductivities in their high-temperature disordered phases, making them potentially appealing electrolytes in all-solid-state batteries. Nonetheless, it is of keen interest to search for other related materials with similar conductivities while at the same time exhibiting even lower (more device-relevant) disordering temperatures, a key challenge for this class of materials. With this in mind, the unknown structural and dynamical properties of the heavier KCB11H12 congener were investigated in detail by X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, nuclear magnetic resonance, quasielastic neutron scattering, and AC impedance measurements. This salt indeed undergoes an entropy-driven, reversible, order-disorder transformation and with a lower onset temperature (348 K upon heating and 340 K upon cooling) in comparison to the lighter LiCB11H12 and NaCB11H12 analogues. The K+ cations in both the low-T ordered monoclinic (P2(1)/c) and high-T disordered cubic (Fm (3) over barm) structures occupy octahedral interstices formed by CB11H12- anions. In the low-T structure, the anions orient themselves so as to avoid close proximity between their highly electropositive C-H vertices and the neighboring K+ cations. In the high-T structure, the anions are orientationally disordered, although to best avoid the K+ cations, the anions likely orient themselves so that their C-H axes are aligned in one of eight possible directions along the body diagonals of the cubic unit cell. Across the transition, anion reorientational jump rates change from 6.2 x 10(6) s(-1) in the low-T phase (332 K) to 2.6 x 10(10) s(-1) in the high-T phase (341 K). In tandem, K+ conductivity increases by about 30-fold across the transition, yielding a high-T phase value of 3.2 x 10(-4 )S cm(-1 )at 361 K. However, this is still about 1 to 2 orders of magnitude lower than that observed for LiCB(11)H(12 )and NaCB11H12, suggesting that the relatively larger K+ cation is much more sterically hindered than Li+ and Na+ from diffusing through the anion lattice via the network of smaller interstitial sites.
  •  
5.
  • Grinderslev, Jakob B., et al. (författare)
  • Neutron Scattering Investigations of the Global and Local Structures of Ammine Yttrium Borohydrides
  • 2021
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:28, s. 15415-15423
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex metal hydrides are a fascinating and continuously expanding class of materials with many properties relevant for solid-state hydrogen and ammonia storage and solid-state electrolytes. The crystal structures are often investigated using powder X-ray diffraction (PXD), which can be ambiguous. Here, we revisit the crystal structure of Y(11BD4)3·3ND3 with the use of neutron diffraction, which, in comparison to previous PXD studies, provides accurate information about the D positions in the compound. Upon cooling to 10 K, the compound underwent a polymorphic transition, and a new monoclinic low-temperature polymorph denoted as α-Y(11BD4)3·3ND3 was discovered. Furthermore, the series of Y(11BH4)3·xNH3 (x = 0, 3, and 7) were also investigated with inelastic neutron scattering and infrared spectroscopy techniques, which provided information of the local coordination environment of the 11BH4- and NH3 groups and unique insights into the hydrogen dynamics. Partial deuteration using ND3 in Y(11BH4)3·xND3 (x = 3 and 7) allowed for an unambiguous assignment of the vibrational bands corresponding to the NH3 and 11BH4- in Y(11BH4)3·xNH3, due to the much larger neutron scattering cross section of H compared to D. The vibrational spectra of Y(11BH4)3·xNH3 could roughly be divided into three regions: (i) below 55 meV, containing mainly 11BH4- librational motions, (ii) 55-130 meV, containing mainly NH3 librational motions, and (iii) above 130 meV, containing 11B-H and N-H bending and stretching motions.
  •  
6.
  • Grinderslev, Jakob B., et al. (författare)
  • Reorientational Dynamics in Y(BH 4 ) 3 ·xNH 3 (x = 0, 3, and 7): The Impact of NH 3 on BH 4 - Dynamics
  • 2024
  • Ingår i: Journal of Physical Chemistry C. - 1932-7447 .- 1932-7455. ; 128:11, s. 4431-4439
  • Tidskriftsartikel (refereegranskat)abstract
    • The reorientational dynamics of Y(BH4)3·xNH3 (x = 0, 3, and 7) was studied using quasielastic neutron scattering (QENS) and neutron spin echo (NSE). The results showed that changing the number of NH3 ligands drastically alters the reorientational mobility of the BH4- anion. From the QENS experiments, it was determined that the BH4- anion performs 2-fold reorientations around the C2 axis in Y(BH4)3, 3-fold reorientations around the C3 axis in Y(BH4)3·3NH3, and either 2-fold reorientations around the C2 axis or 3-fold reorientations around the C3 axis in Y(BH4)3·7NH3. The relaxation time of the BH4- anion at 300 K decreases from 2 × 10-7 s for x = 0 to 1 × 10-12 s for x = 3 and to 7 × 10-13 s for x = 7. In addition to the reorientational dynamics of the BH4- anion, it was shown that the NH3 ligands exhibit 3-fold reorientations around the C3 axis in Y(BH4)3·3NH3 and Y(BH4)3·7NH3 as well as 3-fold quantum mechanical rotational tunneling around the same axis at 5 K. The new insights constitute a significant step toward understanding the relationship between the addition of ligands and the enhanced ionic conductivity observed in systems such as LiBH4·xNH3 and Mg(BH4)2·xCH3NH2
  •  
7.
  • Mink, Janos, et al. (författare)
  • Vibrational properties of -KSiH3 and -RbSiH3 : a combined Raman and inelastic neutron scattering study
  • 2017
  • Ingår i: Journal of Raman Spectroscopy. - : Wiley. - 0377-0486 .- 1097-4555. ; 48:2, s. 284-291
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydrogen storage materials ASiH(3) (A=K and Rb) represent complex metal hydrides built from metal cations and pyramidal SiH3- ions. At room temperature, SiH3- moieties are randomly oriented because of dynamical disorder (-modifications). At temperatures below 200K, ASiH(3) exist as ordered low-temperature () modifications. The vibrational properties of -ASiH(3) were characterized by a combination of Raman spectroscopy and inelastic neutron scattering. Internal modes of SiH3- are observed in the spectral range 1800-1900cm(-1) (stretching modes) and 890-1000cm(-1) (bending modes). External modes are observed below 500cm(-1). Specifically, SiH3- librations are between 300-450cm(-1) and 270-400cm(-1) for A=K and Rb, respectively, SiH3- translations are between 95 and 160cm(-1), K+ translations are in the range 60-100cm(-1) and Rb+ translations in the range 50-70cm(-1). The red-shift of libration modes for A=Rb is associated with a 15-30% reduction of the libration force constants of SiH3- ions in -RbSiH3. This correlates with a lower temperature for the - order-disorder phase transition (278 vs 298K). Libration modes become significantly anharmonic with increasing temperature but are maintained up to at least 200K. The vibrational properties of ASiH(3) compare well to those of alkali metal borohydrides ABH(4) (A=Na-Cs).
  •  
8.
  • Österberg, Carin, 1987, et al. (författare)
  • Dynamics of Pyramidal SiH3- Ions in ASiH(3) (A = K and Rb) Investigated with Quasielastic Neutron Scattering
  • 2016
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:12, s. 6369-6376
  • Tidskriftsartikel (refereegranskat)abstract
    • The two alkali silanides ASiH(3) (A = K and Rb) were investigated by means of quasielastic neutron scattering, both below and above the order-disorder phase transition occurring at around 275-300 K. Measurements upon heating show that there is a large change in the dynamics on going through the phase transition, whereas measurements upon cooling reveal a strong hysteresis due to undercooling of the disordered phase. The results show that the dynamics is associated with rotational diffusion of SiH3- anions, adequately modeled by H-jumps among 24 different jump locations radially distributed around the Si atom. The average relaxation time between successive jumps is of the order of subpicoseconds and exhibits a weak temperature dependence with a small difference in activation energy between the two materials, 39(1) meV for KSiH3 and 33(1) meV for RbSiH3. The pronounced SiH3- dynamics explains the high entropy observed in the disordered phase resulting in the low entropy variation for hydrogen absorption/desorption and hence the origin of these materials' favorable hydrogen storage properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy