SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uhrbom M.) "

Sökning: WFRF:(Uhrbom M.)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Moore, Lynette M, et al. (författare)
  • IGFBP2 is a candidate biomarker for Ink4a-Arf status and a therapeutic target for high-grade gliomas
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:39, s. 16675-16679
  • Tidskriftsartikel (refereegranskat)abstract
    • The levels of insulin-like growth factor-binding protein 2 (IGFBP2) are elevated during progression of many human cancers. By using a glial-specific transgenic mouse system (RCAS/Ntv-a), we reported previously that IGFBP2 is an oncogenic factor for glioma progression in combination with platelet-derived growth factor-beta (PDGFB). Because the INK4a-ARF locus is often deleted in high-grade gliomas (anaplastic oligodendroglioma and glioblastoma), we investigated the effect of the Ink4a-Arf-null background on IGFBP2-mediated progression of PDGFB-initiated oligodendroglioma. We demonstrate here that homozygous deletion of Ink4a-Arf bypasses the requirement of exogenously introduced IGFBP2 for glioma progression. Instead, absence of Ink4a-Arf resulted in elevated endogenous tumor cell IGFBP2. An inverse relationship between p16(INK4a) and IGFBP2 expression was also observed in human glioma tissue samples and in 90 different cancer cell lines by using Western blotting and reverse-phase protein lysate arrays. When endogenous IGFBP2 expression was attenuated by an RCAS vector expressing antisense IGFBP2 in our mouse model, a decreased incidence of anaplastic oligodendroglioma as well as prolonged survival was observed. Thus, p16(INK4a) is a negative regulator of the IGFBP2 oncogene. Loss of Ink4a-Arf results in increased IGFBP2, which contributes to glioma progression, thereby implicating IGFBP2 as a marker and potential therapeutic target for Ink4a-Arf-deleted gliomas.
  •  
2.
  • Petkevicius, K., et al. (författare)
  • TLCD1 and TLCD2 regulate cellular phosphatidylethanolamine composition and promote the progression of non-alcoholic steatohepatitis
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The regulation of cellular phosphatidylethanolamine (PE) acyl chain composition is poorly understood. Here, the authors show that TLCD1 and TLCD2 proteins mediate the formation of monounsaturated fatty acid-containing PE species and promote the progression of non-alcoholic steatohepatitis. The fatty acid composition of phosphatidylethanolamine (PE) determines cellular metabolism, oxidative stress, and inflammation. However, our understanding of how cells regulate PE composition is limited. Here, we identify a genetic locus on mouse chromosome 11, containing two poorly characterized genes Tlcd1 and Tlcd2, that strongly influences PE composition. We generated Tlcd1/2 double-knockout (DKO) mice and found that they have reduced levels of hepatic monounsaturated fatty acid (MUFA)-containing PE species. Mechanistically, TLCD1/2 proteins act cell intrinsically to promote the incorporation of MUFAs into PEs. Furthermore, TLCD1/2 interact with the mitochondria in an evolutionarily conserved manner and regulate mitochondrial PE composition. Lastly, we demonstrate the biological relevance of our findings in dietary models of metabolic disease, where Tlcd1/2 DKO mice display attenuated development of non-alcoholic steatohepatitis compared to controls. Overall, we identify TLCD1/2 proteins as key regulators of cellular PE composition, with our findings having broad implications in understanding and treating disease.
  •  
3.
  •  
4.
  •  
5.
  • Damhofer, Helene, et al. (författare)
  • TAK1 inhibition leads to RIPK1-dependent apoptosis in immune-activated cancers
  • 2024
  • Ingår i: Cell Death and Disease. - : Springer Nature. - 2041-4889. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Poor survival and lack of treatment response in glioblastoma (GBM) is attributed to the persistence of glioma stem cells (GSCs). To identify novel therapeutic approaches, we performed CRISPR/Cas9 knockout screens and discovered TGFβ activated kinase (TAK1) as a selective survival factor in a significant fraction of GSCs. Loss of TAK1 kinase activity results in RIPK1-dependent apoptosis via Caspase-8/FADD complex activation, dependent on autocrine TNFα ligand production and constitutive TNFR signaling. We identify a transcriptional signature associated with immune activation and the mesenchymal GBM subtype to be a characteristic of cancer cells sensitive to TAK1 perturbation and employ this signature to accurately predict sensitivity to the TAK1 kinase inhibitor HS-276. In addition, exposure to pro-inflammatory cytokines IFN gamma and TNFα can sensitize resistant GSCs to TAK1 inhibition. Our findings reveal dependency on TAK1 kinase activity as a novel vulnerability in immune-activated cancers, including mesenchymal GBMs that can be exploited therapeutically.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Babacic, Haris, et al. (författare)
  • Glioblastoma stem cells express non-canonical proteins and exclusive mesenchymal-like or non-mesenchymal-like protein signatures
  • 2023
  • Ingår i: Molecular Oncology. - : John Wiley & Sons. - 1574-7891 .- 1878-0261. ; 17:2, s. 238-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GBM) cancer stem cells (GSCs) contribute to GBM's origin, recurrence, and resistance to treatment. However, the understanding of how mRNA expression patterns of GBM subtypes are reflected at global proteome level in GSCs is limited. To characterize protein expression in GSCs, we performed in-depth proteogenomic analysis of patient-derived GSCs by RNA-sequencing and mass-spectrometry. We quantified > 10 000 proteins in two independent GSC panels and propose a GSC-associated proteomic signature characterizing two distinct phenotypic conditions; one defined by proteins upregulated in proneural and classical GSCs (GPC-like), and another by proteins upregulated in mesenchymal GSCs (GM-like). The GM-like protein set in GBM tissue was associated with necrosis, recurrence, and worse overall survival. Through proteogenomics, we discovered 252 non-canonical peptides in the GSCs, i.e., protein sequences that are variant or derive from genome regions previously considered non-protein-coding, including variants of the heterogeneous ribonucleoproteins implicated in RNA splicing. In summary, GSCs express two protein sets that have an inverse association with clinical outcomes in GBM. The discovery of non-canonical protein sequences questions existing gene models and pinpoints new protein targets for research in GBM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy