SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Umer Husen Muhammad) "

Sökning: WFRF:(Umer Husen Muhammad)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  • Carlevaro-Fita, J, et al. (författare)
  • Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis
  • 2020
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1, s. 56-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.
  •  
3.
  • Cavalli, Marco, et al. (författare)
  • Allele specific chromatin signals, 3D interactions, and motif predictions for immune and B cell related diseases
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Several Genome Wide Association Studies (GWAS) have reported variants associated to immune diseases. However, the identified variants are rarely the drivers of the associations and the molecular mechanisms behind the genetic contributions remain poorly understood. ChIP-seq data for TFs and histone modifications provide snapshots of protein-DNA interactions allowing the identification of heterozygous SNPs showing significant allele specific signals (AS-SNPs). AS-SNPs can change a TF binding site resulting in altered gene regulation and are primary candidates to explain associations observed in GWAS and expression studies. We identified 17,293 unique AS-SNPs across 7 lymphoblastoid cell lines. In this set of cell lines we interrogated 85% of common genetic variants in the population for potential regulatory effect and we identified 237 AS-SNPs associated to immune GWAS traits and 714 to gene expression in B cells. To elucidate possible regulatory mechanisms we integrated long-range 3D interactions data to identify putative target genes and motif predictions to identify TFs whose binding may be affected by AS-SNPs yielding a collection of 173 AS-SNPs associated to gene expression and 60 to B cell related traits. We present a systems strategy to find functional gene regulatory variants, the TFs that bind differentially between alleles and novel strategies to detect the regulated genes.
  •  
4.
  • Dabrowski, Michal, et al. (författare)
  • Reliability assessment of null allele detection : inconsistencies between and within different methods
  • 2014
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 14:2, s. 361-373
  • Tidskriftsartikel (refereegranskat)abstract
    • Microsatellite loci are widely used in population genetic studies, but the presence of null alleles may lead to biased results. Here, we assessed five methods that indirectly detect null alleles and found large inconsistencies among them. Our analysis was based on 20 microsatellite loci genotyped in a natural population of Microtus oeconomus sampled during 8years, together with 1200 simulated populations without null alleles, but experiencing bottlenecks of varying duration and intensity, and 120 simulated populations with known null alleles. In the natural population, 29% of positive results were consistent between the methods in pairwise comparisons, and in the simulated data set, this proportion was 14%. The positive results were also inconsistent between different years in the natural population. In the null-allele-free simulated data set, the number of false positives increased with increased bottleneck intensity and duration. We also found a low concordance in null allele detection between the original simulated populations and their 20% random subsets. In the populations simulated to include null alleles, between 22% and 42% of true null alleles remained undetected, which highlighted that detection errors are not restricted to false positives. None of the evaluated methods clearly outperformed the others when both false-positive and false-negative rates were considered. Accepting only the positive results consistent between at least two methods should considerably reduce the false-positive rate, but this approach may increase the false-negative rate. Our study demonstrates the need for novel null allele detection methods that could be reliably applied to natural populations.
  •  
5.
  •  
6.
  • Kruczyk, Marcin, et al. (författare)
  • Peak Finder Metaserver - a novel application for finding peaks in ChIP-seq data
  • 2013
  • Ingår i: BMC Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 14, s. 280-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Finding peaks in ChIP-seq is an important process in biological inference. In some cases, such as positioning nucleosomes with specific histone modifications or finding transcription factor binding specificities, the precision of the detected peak plays a significant role. There are several applications for finding peaks (called peak finders) based on different algorithms (e.g. MACS, Erange and HPeak). Benchmark studies have shown that the existing peak finders identify different peaks for the same dataset and it is not known which one is the most accurate. We present the first meta-server called Peak Finder MetaServer (PFMS) that collects results from several peak finders and produces consensus peaks. Our application accepts three standard ChIP-seq data formats: BED, BAM, and SAM. Results: Sensitivity and specificity of seven widely used peak finders were examined. For the experiments we used three previously studied Transcription Factors (TF) ChIP-seq datasets and identified three of the selected peak finders that returned results with high specificity and very good sensitivity compared to the remaining four. We also ran PFMS using the three selected peak finders on the same TF datasets and achieved higher specificity and sensitivity than the peak finders individually. Conclusions: We show that combining outputs from up to seven peak finders yields better results than individual peak finders. In addition, three of the seven peak finders outperform the remaining four, and running PFMS with these three returns even more accurate results. Another added value of PFMS is a separate report of the peaks returned by each of the included peak finders.
  •  
7.
  • Rheinbay, E, et al. (författare)
  • Analyses of non-coding somatic drivers in 2,658 cancer whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 102-
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of drivers of cancer has traditionally focused on protein-coding genes1–4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5′ region of TP53, in the 3′ untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.
  •  
8.
  •  
9.
  • Umer, Husen Muhammad (författare)
  • Computational Modelling of Gene Regulation in Cancer : Coding the noncoding genome
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Technological advancements have enabled quantification of processes within and around us. The information stored within our body converts into petabytes of data. Processing and learning from such data requires comprehensive computational programs and software systems. We developed software programs to systematically investigate the process of gene regulation in the human genome. Gene regulation is a complex process where several genomic elements control expression of a gene through recruiting many transcription factor (TF) proteins. The TFs recognize specific DNA sequences known as motifs. DNA mutations in regulatory elements and particularly in TF motifs may cause gene deregulation. Therefore, defining the landscape of regulatory elements and their roles in cancer and complex diseases is of major importance.We developed an algorithm (tfNet) to identify regulatory elements based on transcription factor binding sites. tfNet identified nearly 144,000 regulatory elements in five human cell lines. Investigating the elements we identified TF interaction networks and enrichment of many GWAS SNPs. We also defined the regulatory landscape for other conditions and species. Next, we investigated the role of regulatory elements in cancer. Cancer is initiated and developed by genetic aberrations in the genome. Genetic changes that are present in a cancer genome are obtained through whole genome sequencing technologies. We analyzed somatic mutations that had been detected in 326 whole genomes of liver cancer patients. Our results indicated 907 candidate mutations affecting TF motifs. Genome wide alignment of the mutated motifs revealed a significant enrichment of mutations in a highly conserved position of the CTCF motif. Gene expression analysis exhibited disruption of topologically associated domains in the mutated samples. We also confirmed the mutational pattern in pancreatic, gastric and esophagus cancers. Finally, enrichment of cancer associated gene sets and pathways suggested great role of noncoding mutations in cancer.To systematically analyze DNA mutations in TF motifs, we developed an online database system (funMotifs). Publicly available datasets were collected for thousands experiments. The datasets were integrated using a logistic regression model. Functionality annotations and scores for motifs of 519 TFs were derived. The database allows for identification of variants affecting functional motifs in a selected tissue type. Finally, a comprehensive analysis was performed to identify mutations overlapping functional TF motifs in 37 cancer types. Somatic mutations from a pan-cancer cohort of 2,515 cancer whole genomes were investigated. A significant enrichment of mutations in the CpG site of the CEBPB motif was identified. Overall, 10,806 mutated regulatory elements were identified including 406 highly recurrent ones. Genes associated to the mutated elements were highly enriched for cancer-related pathways. Our analyses provide further insights onto the role of regulatory elements and their impacts on cancer development.
  •  
10.
  • Umer, Husen Muhammad, et al. (författare)
  • Functional annotation of noncoding mutations in cancer
  • 2021
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 4:9
  • Tidskriftsartikel (refereegranskat)abstract
    • In a cancer genome, the noncoding sequence contains the vast majority of somatic mutations. While very few are expected to be cancer drivers, those affecting regulatory elements have the potential to have downstream effects on gene regulation that may contribute to cancer progression. To prioritize regulatory mutations, we screened somatic mutations in the Pan-Cancer Analysis of Whole Genomes cohort of 2,515 cancer genomes on individual bases to assess their potential regulatory roles in their respective cancer types. We found a highly significant enrichment of regulatory mutations associated with the deamination signature overlapping a CpG site in the CCAAT/Enhancer Binding Protein beta recognition sites in many cancer types. Overall, 5,749 mutated regulatory elements were identified in 1,844 tumor samples from 39 cohorts containing 11,962 candidate regulatory mutations. Our analysis indicated 20 or more regulatory mutations in 5.5% of the samples, and an overall average of six per tumor. Several recurrent elements were identified, and major cancer-related pathways were significantly enriched for genes nearby the mutated regulatory elements. Our results provide a detailed view of the role of regulatory elements in cancer genomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy