SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ummenhofer Caroline C.) "

Sökning: WFRF:(Ummenhofer Caroline C.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdi, Hakim, et al. (författare)
  • The El Niño – La Niña cycle and recent trends in supply and demand of net primary productivity in African drylands
  • 2016
  • Ingår i: Climatic Change. - : Springer Science and Business Media LLC. - 0165-0009 .- 1573-1480. ; 138:1, s. 111-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Inter-annual climatic variability over a large portion of sub-Saharan Africa is under the influence of the El Niño-Southern Oscillation (ENSO). Extreme variability in climate is a threat to rural livelihoods in sub-Saharan Africa, yet the role of ENSO in the balance between supply and demand of net primary productivity (NPP) over this region is unclear. Here, we analyze the impact of ENSO on this balance in a spatially explicit framework using gridded population data from the WorldPop project, satellite-derived data on NPP supply, and statistical data from the United Nations. Our analyses demonstrate that between 2000 and 2013 fluctuations in the supply of NPP associated with moderate ENSO events average ± 2.8 g C m−2 yr.−1 across sub-Saharan drylands. The greatest sensitivity is in arid Southern Africa where a + 1 °C change in the Niño-3.4 sea surface temperature index is associated with a mean change in NPP supply of −6.6 g C m−2 yr.−1. Concurrently, the population-driven trend in NPP demand averages 3.5 g C m−2 yr.−1 over the entire region with densely populated urban areas exhibiting the highest mean demand for NPP. Our findings highlight the importance of accounting for the role ENSO plays in modulating the balance between supply and demand of NPP in sub-Saharan drylands. An important implication of these findings is that increase in NPP demand for socio-economic metabolism must be taken into account within the context of climate-modulated supply.
  •  
2.
  • D'Arrigo, Rosanne, et al. (författare)
  • Three centuries of Myanmar monsoon climate variability inferred from teak tree rings
  • 2011
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 38, s. L24705-
  • Tidskriftsartikel (refereegranskat)abstract
    • Asian monsoon extremes critically impact much of the globe's population. Key gaps in our understanding of monsoon climate remain due to sparse coverage of paleoclimatic information, despite intensified recent efforts. Here we describe a ring width chronology of teak, one of the first high-resolution proxy records for the nation of Myanmar. Based on 29 samples from 20 living trees and spanning from 1613-2009, this record, from the Maingtha forest reserve north of Mandalay, helps fill a substantial gap in spatial coverage of paleoclimatic records for monsoon Asia. Teak growth is positively correlated with rainfall and Palmer Drought Severity Index variability over Myanmar, during and prior to the May-September monsoon season (e. g., r = 0.38 with Yangon rainfall, 0.001, n 68). Importantly, this record also correlates significantly with larger-scale climate indices, including core Indian rainfall (23 degrees N, 76 degrees E; a particularly sensitive index of the monsoon), and the El Nino-Southern Oscillation (ENSO). The teak ring width value following the so-called 1997-98 El Nino of the Century suggests that this was one of the most severe droughts in the past similar to 300 years in Myanmar. Evidence for past dry conditions inferred for Myanmar is consistent with tree-ring records of decadal megadroughts developed for Thailand and Vietnam. These results confirm the climate signature related to monsoon rainfall in the Myanmar teak record and the considerable potential for future development of climate-sensitive chronologies from Myanmar and the broader region of monsoon Asia.
  •  
3.
  • Finke, Kathrin, et al. (författare)
  • Revisiting remote drivers of the 2014 drought in South-Eastern Brazil
  • 2020
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 55, s. 3197-3211
  • Tidskriftsartikel (refereegranskat)abstract
    • South-Eastern Brazil experienced a devastating drought associated with significant agricultural losses in austral summer 2014. The drought was linked to the development of a quasi-stationary anticyclone in the South Atlantic in early 2014 that affected local precipitation patterns over South-East Brazil. Previous studies have suggested that the unusual blocking was triggered by tropical Pacific sea surface temperature (SST) anomalies and, more recently, by convection over the Indian Ocean related to the Madden-Julian Oscillation. Further investigation of the proposed teleconnections appears crucial for anticipating future economic impacts. In this study, we use numerical experiments with an idealized atmospheric general circulation model forced with the observed 2013/2014 SST anomalies in different ocean basins to understand the dominant mechanism that initiated the 2014 South Atlantic anticyclonic anomaly. We show that a forcing with global 2013/2014 SST anomalies enhances the chance for the occurrence of positive geopotential height anomalies in the South Atlantic. However, further sensitivity experiments with SST forcings in separate ocean basins suggest that neither the Indian Ocean nor tropical Pacific SST anomalies alone have contributed significantly to the anomalous atmospheric circulation that led to the 2014 South-East Brazil drought. The model study rather points to an important role of remote forcing from the South Pacific, local South Atlantic SSTs, and internal atmospheric variability in driving the persistent blocking over the South Atlantic.
  •  
4.
  •  
5.
  • Rivera-Ferre, Marta G., et al. (författare)
  • A vision for transdisciplinarity in Future Earth : Perspectives from young researchers
  • 2013
  • Ingår i: The Journal of Agriculture, Food Systems, and Community Development. - : New Leaf Associates, Inc.. - 2152-0798 .- 2152-0801. ; 3:4, s. 249-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Meeting the demand for food, energy, and water as world population increases is a major goal for the food systems of the future. These future challenges, which are complex, multiscalar, and cross-sectoral in nature, require a food systems approach that recognizes the socio-ecological and socio-technical dimensions of food (Ericksen, 2008; Ingram, 2011; Rivera-Ferre, 2012). The United Nations' Future Earth Program aims to provide a new platform for consolidating the knowledge required for societies to transition to global sustainability (Future Earth Transition Team, 2012). In this paper, we explore how Future Earth could become a vehicle for inspiring the production of new research ideas and collaborations for sustainably transforming the future food system. We do this on the basis of a synthesis of views from 28 young (below 40 years old) food system scientists, representing five continents. Their expertise comes from disciplines including food engineering, agronomy, ecology, geography, psychology, public health, food politics, nutritional science, political science, sociology and sustainability science. This paper begins with an outline of the institutional framework of Future Earth and how it might support innovative transdisciplinary research on food systems, and the position of young scientists within this framework. Secondly, we outline the key insights expressed by the young scientists during the Food Futures Conference in Villa Vigoni, Italy, in April 2013, including the core research questions raised during the meeting as well as some of the challenges involved in realizing their research ambitions within their professional spheres. 
  •  
6.
  • Ummenhofer, Caroline C., et al. (författare)
  • How Climate Change Affects Extremes in Maize and Wheat Yield in Two Cropping Regions
  • 2015
  • Ingår i: Journal of Climate. - 1520-0442. ; 28:12, s. 4653-4687
  • Tidskriftsartikel (refereegranskat)abstract
    • Downscaled climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were used to force a dynamic vegetation agricultural model (Agro-IBIS) and simulate yield responses to historical climate and two future emissions scenarios for maize in the U.S. Midwest and wheat in southeastern Australia. In addition to mean changes in yield, the frequency of high- and low-yield years was related to changing local hydroclimatic conditions. Particular emphasis was on the seasonal cycle of climatic variables during extreme-yield years and links to crop growth. While historically high (low) yields in Iowa tend to occur during years with anomalous wet (dry) growing season, this is exacerbated in the future. By the end of the twenty-first century, the multimodel mean (MMM) of growing season temperatures in Iowa is projected to increase by more than 5 degrees C, and maize yield is projected to decrease by 18%. For southeastern Australia, the frequency of low-yield years rises dramatically in the twenty-first century because of significant projected drying during the growing season. By the late twenty-first century, MMM growing season precipitation in southeastern Australia is projected to decrease by 15%, temperatures are projected to increase by 2.8 degrees-4.5 degrees C, and wheat yields are projected to decline by 70%. Results highlight the sensitivity of yield projections to the nature of hydroclimatic changes. Where future changes are uncertain, the sign of the yield change simulated by Agro-IBIS is uncertain as well. In contrast, broad agreement in projected drying over southern Australia across models is reflected in consistent yield decreases for the twenty-first century. Climatic changes of the order projected can be expected to pose serious challenges for continued staple grain production in some current centers of production, especially in marginal areas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy