SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Unold Thomas) "

Sökning: WFRF:(Unold Thomas)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antonio Cabas, Vidani, et al. (författare)
  • Influence of the Rear Interface on Composition and Photoluminescence Yield of CZTSSe Absorbers: A Case for an Al2O3 Intermediate Layer
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:16, s. 19487-19496
  • Tidskriftsartikel (refereegranskat)abstract
    • The rear interface of kesterite absorbers with Mo back contact represents one of the possible sources of nonradiative voltage losses (Delta V-oc,V-nrad) because of the reported decomposition reactions, an uncontrolled growth of MoSe2, or a nonoptimal electrical contact with high recombination. Several intermediate layers (IL), such as MoO3, TiN, and ZnO, have been tested to mitigate these issues, and efficiency improvements have been reported. However, the introduction of IL also triggers other effects such as changes in alkali diffusion, altered morphology, and modifications in the absorber composition, all factors that can also influence Delta V-oc,V-nrad. In this study, the different effects are decoupled by designing a special sample that directly compares four rear structures (SLG, SLG/Mo, SLG/Al2O3, and SLG/Mo/Al2O3) with a Na-doped kesterite absorber optimized for a device efficiency >10%. The IL of choice is Al2O3 because of its reported beneficial effect to reduce the surface recombination velocity at the rear interface of solar cell absorbers. Identical annealing conditions and alkali distribution in the kesterite absorber are preserved, as measured by time-of-flight secondary ion mass spectrometry and energy-dispersive X-ray spectroscopy. The lowest Delta V-oc,V-nrad of 290 mV is measured for kesterite grown on Mo, whereas the kesterite absorber on Al2O3 exhibits higher nonradiative losses up to 350 mV. The anticipated field-effect passivation from Al2O3 at the rear interface could not be observed for the kesterite absorbers prepared by the two-step process, further confirmed by an additional experiment with air annealing. Our results suggest that Mo with an in situ formed MoSe2 remains a suitable back contact for high-efficiency kesterite devices.
  •  
2.
  • Becker, Pascal, et al. (författare)
  • Low Temperature Synthesis of Stable γ-CsPbI 3 Perovskite Layers for Solar Cells Obtained by High Throughput Experimentation
  • 2019
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6832 .- 1614-6840. ; 9:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural phases and optoelectronic properties of coevaporated CsPbI 3 thin films with a wide range of [CsI]/[PbI 2 ] compositional ratios are investigated using high throughput experimentation and gradient samples. It is found that for CsI-rich growth conditions, CsPbI 3 can be synthesized directly at low temperature into the distorted perovskite γ-CsPbI 3 phase without detectable secondary phases. In contrast, PbI 2 -rich growth conditions are found to lead to the non-perovskite δ-phase. Photoluminescence spectroscopy and optical-pump THz-probe mapping show carrier lifetimes larger than 75 ns and charge carrier (sum) mobilities larger than 60 cm 2 V −1 s −1 for the γ-phase, indicating their suitability for high efficiency solar cells. The dependence of the carrier mobilities and luminescence peak energy on the Cs-content in the films indicates the presence of Schottky defect pairs, which may cause the stabilization of the γ-phase. Building on these results, p–i–n type solar cells with a maximum efficiency exceeding 12% and high shelf stability of more than 1200 h are demonstrated, which in the future could still be significantly improved, judging on their bulk optoelectronic properties.
  •  
3.
  • Dagar, Janardan, et al. (författare)
  • Compositional and Interfacial Engineering Yield High-Performance and Stable p-i-n Perovskite Solar Cells and Mini-Modules
  • 2021
  • Ingår i: ACS applied materials & interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:11, s. 13022-13033
  • Tidskriftsartikel (refereegranskat)abstract
    • Through the optimization of the perovskite precursor composition and interfaces to selective contacts, we achieved a p-i-n-type perovskite solar cell (PSC) with a 22.3% power conversion efficiency (PCE). This is a new performance record for a PSC with an absorber bandgap of 1.63 eV. We demonstrate that the high device performance originates from a synergy between (1) an improved perovskite absorber quality when introducing formamidinium chloride (FACl) as an additive in the "triple cation" Cs0.05FA0.79MA0.16PbBr0.51I2.49 (Cs-MAFA) perovskite precursor ink, (2) an increased open-circuit voltage, VOC, due to reduced recombination losses when using a lithium fluoride (LiF) interfacial buffer layer, and (3) high-quality hole-selective contacts with a self-assembled monolayer (SAM) of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) on ITO electrodes. While all devices exhibit a high performance after fabrication, as determined from current-density voltage, J-V, measurements, substantial differences in device performance become apparent when considering longer-term stability data. A reduced long-term stability of devices with the introduction of a LiF interlayer is compensated for by using FACl as an additive in the metal-halide perovskite thin-film deposition. Optimized devices maintained about 80% of the initial average PCE during maximum power point (MPP) tracking for >700 h. We scaled the optimized device architecture to larger areas and achieved fully laser patterned series-interconnected mini-modules with a PCE of 19.4% for a 2.2 cm2 active area. A robust device architecture and reproducible deposition methods are fundamental for high performance and stable large-area single junction and tandem modules based on PSCs.
  •  
4.
  • Just, Justus, et al. (författare)
  • Insights into Nucleation and Growth of Colloidal Quaternary Nanocrystals by Multimodal X-ray Analysis
  • 2021
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:4, s. 6439-6447
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper chalcogenide nanocrystals find applications in photovoltaic inks, bio labels, and thermoelectric materials. We reveal insights in the nucleation and growth during synthesis of anisotropic Cu2ZnSnS4 nanocrystals by simultaneously performing in situ X-ray absorption spectroscopy (XAS) and small-angle X-ray scattering (SAXS). Real-time XAFS reveals that upon thiol injection into the reaction flask, a key copper thiolate intermediate species is formed within fractions of seconds, which decomposes further within a narrow temperature and time window to form copper sulfide nanocrystals. These nanocrystals convert into Cu2ZnSnS4 nanorods by sequentially incorporating Sn and Zn. Real-time SAXS and ex situ TEM of aliquots corroborate these findings. Our work demonstrates how combined in situ X-ray absorption and small-angle X-ray scattering enables the understanding of mechanistic pathways in colloidal nanocrystal formation.
  •  
5.
  • Krause, Maximilian, et al. (författare)
  • Microscopic insight into the impact of the KF post-deposition treatment on optoelectronic properties of (Ag,Cu)(In,Ga)Se2 solar cells
  • 2022
  • Ingår i: Progress in Photovoltaics. - : John Wiley & Sons. - 1062-7995 .- 1099-159X. ; 30:1, s. 109-115
  • Tidskriftsartikel (refereegranskat)abstract
    • It is attractive to alloy Cu(In,Ga)Se2 solar-cell absorbers with Ag (ACIGSe), since they lead to similar device performances as the Ag-free absorber layers, while they can be synthesized at much lower deposition temperatures. However, a KF post-deposition treatment (PDT) of the ACIGSe absorber surface is necessary to achieve higher open-circuit voltages (Voc). The present work provides microscopic insights to the effects of this KF PDT, employing correlative scanning-electron microscope techniques on identical positions of cross-sectional specimens of the cell stacks. We found that the increase in Voc after the KF PDT can be explained by the removal of Cu-poor, Ag-poor, and Ga-rich regions near the ACIGSe/CdS interface. The KF PDT leads, when optimally doped, to a very thin K-Ag-Cu-Ga-In-Se layer between ACIGSe and CdS. If the KF dose is too large, we find that Cu-poor and K-rich regions form near the ACIGSe/CdS interface with enhanced nonradiative recombination which explains a decrease in the Voc. This effect occurs in addition to the presence of a (K,Ag,Cu)InSe2 intermediate layer, that might be responsible for limiting the short-current density of the solar cells due to a current blocking behavior.
  •  
6.
  • Larsen, Jes K, et al. (författare)
  • Interference effects in photoluminescence spectra of Cu2ZnSnS4 and Cu(In,Ga)Se2 thin films
  • 2015
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 118:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoluminescence (PL) is commonly used for investigations of Cu2ZnSnS(e)4 [CZTS(e)] and Cu(In,Ga)Se2 (CIGS) thin film solar cells. The influence of interference effects on these measurements is, however, largely overlooked in the community. Here, it is demonstrated that PL spectra of typical CZTS absorbers on Mo/glass substrates can be heavily distorted by interference effects. One reason for the pronounced interference in CZTS is the low reabsorption of the PL emission that typically occurs below the band gap. A similar situation occurs in band gap graded CIGS where the PL emission originates predominantly from the band gap minimum located at the notch region. Based on an optical model for interference effects of PL emitted from a thin film, several approaches to reduce the fringing are identified and tested experimentally. These approaches include the use of measured reflectance data, a calculated interference function, use of high angles of incidence during PL measurements as well as the measurement of polarized light near the Brewster angle.
  •  
7.
  • Marquez, Jose A., et al. (författare)
  • High-temperature decomposition of Cu2BaSnS4 with Sn loss reveals newly identified compound Cu2Ba3Sn2S8
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 8:22, s. 11346-11353
  • Tidskriftsartikel (refereegranskat)abstract
    • The earth-abundant quaternary compound Cu(2)BaSnS(4)is being currently studied as a candidate for photovoltaics and as a photocathode for water splitting. However, the chemical stability of this phase during synthesis is unclear. The synthesis of other quaternary tin-sulphur-based absorbers (e.g., Cu2ZnSnS4) involves an annealing step at high temperature under sulphur gas atmosphere, which can lead to decomposition into secondary phases involving Sn loss from the sample. As the presence of secondary phases can be detrimental for device performance, it is crucial to identify secondary phase chemical, structural and optoelectronic properties. Here we used a combination ofin situEDXRD/XRF and TEM to identify a decomposition pathway for Cu2BaSnS4. Our study reveals that, while Cu(2)BaSnS(4)remains stable at high sulphur partial pressure, the material decomposes at high temperatures into Cu(4)BaS(3)and the hitherto unknown compound Cu(2)Ba(3)Sn(2)S(8)if the synthesis is performed under low partial pressure of sulphur. The presence of Cu(4)BaS(3)in devices could be harmful due to its high conductivity and relatively lower band gap compared to Cu2BaSnS4. The analysis of powder diffraction data reveals that the newly identified compound Cu(2)Ba(3)Sn(2)S(8)crystallizes in the cubic system (space groupI4x304;3d) with a lattice parameter ofa= 14.53(1) angstrom. A yellow powder of Cu(2)Ba(3)Sn(2)S(8)has been synthesized, exhibiting an absorption onset at 2.19 eV.
  •  
8.
  • Näsström, Hampus, et al. (författare)
  • Combinatorial inkjet printing for compositional tuning of metal-halide perovskite thin films
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 10:9, s. 4906-4914
  • Tidskriftsartikel (refereegranskat)abstract
    • To accelerate the materials discovery and development process for a sustainable technology advancement it is imperative to explore and develop combined high-throughput material synthesis and analysis workflows. In this work, we investigate a method of combinatorial inkjet-printing to tune the composition of the inorganic cesium lead mixed halide perovskite solid solution, CsPb(BrxI1-x)3. The compositional variation is achieved by simultaneous printing of different precursor inks with multiple printheads and controlled by varying the number of droplets printed by each printhead throughout the sample. The droplet placement is optimised through an algorithm that allows maximum mixing of the combined inks. The local compositional homogeneity of thin-film samples was investigated as a function of the printing resolution by micrometer-resolution X-ray fluorescence and synchrotron-based grazing-incidence wide-angle X-ray scattering. We show that a combinatorial library of ten compositions between CsPbI3 and CsPbBr2I, printed using the developed algorithm, is locally homogeneous for the optimised printing parameters. An implementation of the algorithm in the high-level programming language Python is provided for easy use in other systems.
  •  
9.
  • Oksenberg, Eitan, et al. (författare)
  • Deconvoluting Energy Transport Mechanisms in Metal Halide Perovskites Using CsPbBr3 Nanowires as a Model System
  • 2021
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 31:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding energy transport in metal halide perovskites is essential to effectively guide further optimization of materials and device designs. However, difficulties to disentangle charge carrier diffusion, photon recycling, and photon transport have led to contradicting reports and uncertainty regarding which mechanism dominates. In this study, monocrystalline CsPbBr3 nanowires serve as 1D model systems to help unravel the respective contribution of energy transport processes in metal-halide perovskites. Spatially, temporally, and spectrally resolved photoluminescence (PL) microscopy reveals characteristic signatures of each transport mechanism from which a robust model describing the PL signal accounting for carrier diffusion, photon propagation, and photon recycling is developed. For the investigated CsPbBr3 nanowires, an ambipolar carrier mobility of μ = 35 cm2 V−1 s−1 is determined, and is found that charge carrier diffusion dominates the energy transport process over photon recycling. Moreover, the general applicability of the developed model is demonstrated on different perovskite compounds by applying it to data provided in previous related reports, from which clarity is gained as to why conflicting reports exist. These findings, therefore, serve as a useful tool to assist future studies aimed at characterizing energy transport mechanisms in semiconductor nanowires using PL.
  •  
10.
  • Phung, Nga, et al. (författare)
  • Photoprotection in metal halide perovskites by ionic defect formation
  • 2022
  • Ingår i: Joule. - : Elsevier BV. - 2542-4351. ; 6:9, s. 2152-2174
  • Tidskriftsartikel (refereegranskat)abstract
    • Photostability is critical for long-term solar cell operation. While light-triggered defects are usually reported as evidence of material degradation, we reveal that the formation of certain defects in metal halide perovskites is crucial for protection against intense or prolonged light exposure. We identify an inherent self-regulating cycle of formation and recovery of ionic defects under light exposure that mitigates the overheating of the lattice due to hot carrier cooling, which allows exposure to several thousand suns without degrading. The excess energy instead dissipates by forming defects, which in turn alters the optoelectronic properties of the absorber, resulting in a temporary reduction of photon absorption. Defects gradually recover to restore the original optoelectronic properties of the absorber. Photoprotection is a key feature for the photostability in plants. Thus, finding a protection mechanism in metal halide perovskites similar to those in nature is encouraging for the development of long-term sustainable solar cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy