SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Urban Jeffrey J.) "

Sökning: WFRF:(Urban Jeffrey J.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Pecunia, Vincenzo, et al. (författare)
  • Roadmap on energy harvesting materials
  • 2023
  • Ingår i: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
3.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
4.
  •  
5.
  • Lu, Dongli, et al. (författare)
  • Inkjet-printed SnOx as an effective electron transport layer for planar perovskite solar cells and the effect of Cu doping
  • 2024
  • Ingår i: Royal Society Open Science. - : The Royal Society. - 2054-5703. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Inkjet printing is a more sustainable and scalable fabrication method than spin coating for producing perovskite solar cells (PSCs). Although spin-coated SnO2 has been intensively studied as an effective electron transport layer (ETL) for PSCs, inkjet-printed SnO(2 )ETLs have not been widely reported. Here, we fabricated inkjet-printed, solution-processed SnOx ETLs for planar PSCs. A champion efficiency of 17.55% was achieved for the cell using a low-temperature processed SnOx ETL. The low-temperature SnOx exhibited an amorphous structure and outperformed high-temperature crystalline SnO2. The improved performance was attributed to enhanced charge extraction and transport and suppressed charge recombination at ETL/perovskite interfaces, which originated from enhanced electrical and optical properties of SnOx, improved perovskite film quality, and well-matched energy level alignment between the SnOx ETL and the perovskite layer. Furthermore, SnOx was doped with Cu. Cu doping increased surface oxygen defects and upshifted energy levels of SnOx, leading to reduced device performance. A tunable hysteresis was observed for PSCs with Cu-doped SnOx ETLs, decreasing at first and turning into inverted hysteresis afterwards with increasing Cu doping level. This tunable hysteresis was related to the interplay between charge/ion accumulation and recombination at ETL/perovskite interfaces in the case of electron extraction barriers.
  •  
6.
  • Mattox, Tracy M., et al. (författare)
  • Impact of Source Position and Obstructions on Fume Hood Releases
  • 2019
  • Ingår i: Annals of Work Exposures and Health. - : OXFORD UNIV PRESS. - 2398-7308 .- 2398-7316. ; 63:8, s. 937-949
  • Tidskriftsartikel (refereegranskat)abstract
    • A fume hood is the most central piece of safety equipment available to researchers in a laboratory environment. While it is understood that the face velocity and sash height can drastically influence airflow patterns, few specific recommendations can be given to the researcher to guide them to maximize the safety of their particular hood. This stems from the issue that fundamentally little is known regarding how obstructions within the hood can push potentially harmful particles or chemicals out of the fume hood and into the breathing zone. In this work, we demonstrate how the position of a typical nanoparticle synthesis setup, including a Schlenk line and stir plate on an adjustable stand, influences airflow in a constant velocity fume hood. Using a combination of smoke evolution experiments and the aid of computational fluid dynamics simulations, we show how the location and height of the reaction components impact airflow. This work offers a highly visual display intended especially for new or inexperienced fume hood users. Based upon our studies and simulations, we provide detailed guidance to researchers and lab technicians on how to optimally modify reaction placement in order to protect the breathing zone while working.
  •  
7.
  • Qi, Liang, et al. (författare)
  • Dehydrogenation of Propane and n-Butane Catalyzed by Isolated PtZn4 Sites Supported on Self-Pillared Zeolite Pentasil Nanosheets
  • 2022
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 12:18, s. 11177-11189
  • Tidskriftsartikel (refereegranskat)abstract
    • Propene and 1,3-butadiene are important building-block chemicals that can be produced by dehydrogenation of propane and butane on Pt catalysts. A challenge is to develop highly active and selective catalysts that are resistant to deactivation by Pt sintering and coke formation. We have recently shown (Qi , J. Am. Chem. Soc. 2021, 143, 21364-21378) that these objectives can be met for propane dehydrogenation (PDH) using atomically dispersed Pt anchored to neighboring SiOZn-OH groups bonded to the framework of dealuminated zeolite BEA. In the present study, we demonstrate that significantly superior performance can be achieved using self-pillared pentasil (SPP) zeolite nanosheets as supports. Following catalyst reduction in H-2, atomic resolution, scanning transmission electron microscopy (STEM), and X-ray absorption spectroscopy (XAS) indicate that Pt is stabilized in structures well approximated as ( Si-O-Zn)(4-5)Pt. These species are highly active, selective, and stable for PDH to give propene and for n-butane dehydrogenation (BDH) to give 1,3-butadiene. No catalyst deactivation was observed after 12 days of time on stream, and the selectivity remained at nearly 100% for PDH conducted at 823 K and a weight hourly space velocity (WHSV) of 1350 h(-1). The apparent rate coefficient for PDH on this catalyst is significantly higher than that reported previously for Pt-containing catalysts. For BDH at 823 K and a WHSV of 3560 h(-1), the selectivity to butene isomers and 1,3-butadiene is 98.9%, and the selectivity to 1,3-butadiene is 45%. We propose that the high catalyst stability observed during PDH and BDH is a consequence of a large fraction of the Pt-containing centers being located on the external surface of the zeolite nanosheets, where nascent coke precursors can desorb before condensing to form coke.
  •  
8.
  • Wunsch, Urban J., et al. (författare)
  • Mathematical chromatography deciphers the molecular fingerprints of dissolved organic matter
  • 2020
  • Ingår i: The Analyst. - : ROYAL SOC CHEMISTRY. - 0003-2654 .- 1364-5528. ; 145:5, s. 1789-1800
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution mass spectrometry (HRMS) elucidates the molecular composition of dissolved organic matter (DOM) through the unequivocal assignment of molecular formulas. When HRMS is used as a detector coupled to high performance liquid chromatography (HPLC), the molecular fingerprints of DOM are further augmented. However, the identification of eluting compounds remains impossible when DOM chromatograms consist of unresolved humps. Here, we utilized the concept of mathematical chromatography to achieve information reduction and feature extraction. Parallel Factor Analysis (PARAFAC) was applied to a dataset describing the reverse-phase separation of DOM in headwater streams located in southeast Sweden. A dataset consisting of 1355 molecular formulas and 7178 mass spectra was reduced to five components that described 96.89% of the data. Each component summarized the distinct chromatographic elution of molecular formulas with different polarity. Component scores represented the abundance of the identified HPLC features in each sample. Using this chemometric approach allowed the identification of common patterns in HPLC-HRMS datasets by reducing thousands of mass spectra to only a few statistical components. Unlike in principal component analysis (PCA), components closely followed the analytical principles of HPLC-HRMS and therefore represented more realistic pools of DOM. This approach provides a wealth of new opportunities for unravelling the composition of complex mixtures in natural and engineered systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
annan publikation (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Wang, Xin (2)
Zhang, Yan (1)
Alonso, Alejandro (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
Lemme, Max C. (1)
visa fler...
Vertessy, Beata G. (1)
Wang, Kai (1)
Sun, Kai (1)
Wang, Mei (1)
Liu, Yang (1)
Wang, Yi (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Bai, Yang (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Zhang, Qian (1)
Xu, Xin (1)
Nàgy, Péter (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
Caironi, Mario (1)
Bonaldo, Paolo (1)
Thum, Thomas (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Smith, Caroline (1)
del Campo, Javier (1)
Swärd, Karl (1)
Nilsson, Per (1)
De Milito, Angelo (1)
Zhang, Jian (1)
Shukla, Deepak (1)
Kågedal, Katarina (1)
Chen, Guoqiang (1)
Liu, Wei (1)
Chen, Yan (1)
Cheetham, Michael E. (1)
Sigurdson, Christina ... (1)
Clarke, Robert (1)
Zhang, Fan (1)
Gonzalez-Alegre, Ped ... (1)
Jin, Lei (1)
Chen, Junyu (1)
Chen, Qi (1)
Taylor, Mark J. (1)
Romani, Luigina (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (3)
Uppsala universitet (2)
Umeå universitet (1)
Stockholms universitet (1)
Linköpings universitet (1)
Lunds universitet (1)
visa fler...
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Teknik (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy