SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uroz Stephane) "

Sökning: WFRF:(Uroz Stephane)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Courty, Pierre-Emmanuel, et al. (författare)
  • The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts
  • 2010
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 42:5, s. 679-698
  • Forskningsöversikt (refereegranskat)abstract
    • The fungal symbionts forming ectomycorrhizas, as well as their associated bacteria, benefit forest trees in a number of ways although the most important is enhancing soil nutrient mobilization and uptake. This is reciprocated by the allocation of carbohydrates by the tree to the fungus through the root interface, making the relationship a mutualistic association. Many field observations suggest that ectomycorrhizal fungi contribute to a number of key ecosystem functions such as carbon cycling, nutrient mobilization from soil organic matter, nutrient mobilization from soil minerals, and linking trees through common mycorrhizal networks. Until now, it has been very difficult to study trees and their fungal associates in forest ecosystems and most of the work on ECM functioning has been done in laboratory or nursery conditions. In this review with discuss the possibility of working at another scale, in forest settings. Numerous new techniques are emerging that makes possible the in situ study of the functional diversity of ectomycorrhizal communities. This approach should help to integrate developing research on the functional ecology of ectomycorrhizas and their associated bacteria with the potential implications of such research for managing the effects of climate change on forests. (C) 2010 Elsevier Ltd. All rights reserved.
  •  
2.
  • Morriën, Elly, et al. (författare)
  • Soil networks become more connected and take up more carbon as nature restoration progresses
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy