SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Urso M. A.) "

Sökning: WFRF:(Urso M. A.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schumacher, A. E., et al. (författare)
  • Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic : a comprehensive demographic analysis for the Global Burden of Disease Study 2021
  • 2024
  • Ingår i: The Lancet. - : Elsevier B.V.. - 0140-6736 .- 1474-547X. ; 403:10440, s. 1989-2056
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. Funding: Bill & Melinda Gates Foundation. 
  •  
2.
  • 2017
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Zuin, M., et al. (författare)
  • Overview of the RFX-mod fusion science activity
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the main recent results of the RFX-mod fusion science activity. The RFX-mod device is characterized by a unique flexibility in terms of accessible magnetic configurations. Axisymmetric and helically shaped reversed-field pinch equilibria have been studied, along with tokamak plasmas in a wide range of q(a) regimes (spanning from 4 down to 1.2 values). The full range of magnetic configurations in between the two, the so-called ultra-low q ones, has been explored, with the aim of studying specific physical issues common to all equilibria, such as, for example, the density limit phenomenon. The powerful RFX-mod feedback control system has been exploited for MHD control, which allowed us to extend the range of experimental parameters, as well as to induce specific magnetic perturbations for the study of 3D effects. In particular, transport, edge and isotope effects in 3D equilibria have been investigated, along with runaway mitigations through induced magnetic perturbations. The first transitions to an improved confinement scenario in circular and D-shaped tokamak plasmas have been obtained thanks to an active modification of the edge electric field through a polarized electrode. The experiments are supported by intense modeling with 3D MHD, gyrokinetic, guiding center and transport codes. Proposed modifications to the RFX-mod device, which will enable further contributions to the solution of key issues in the roadmap to ITER and DEMO, are also briefly presented.
  •  
7.
  • Di Fatta, G., et al. (författare)
  • Preface
  • 2011
  • Ingår i: IEEE International Conference on Data Mining. Proceedings. - : Institute of Electrical and Electronics Engineers (IEEE). - 1550-4786. ; , s. xlviii-xlvix
  • Tidskriftsartikel (refereegranskat)
  •  
8.
  • Dalla Pria, Gaia Lucrezia, et al. (författare)
  • Experimental study on the radiation-induced destruction of organic compounds on the surface of the Moon
  • 2024
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 415
  • Tidskriftsartikel (refereegranskat)abstract
    • Volatile organic molecules and a complex organic refractory material were detected on the Moon and on lunar samples. The Moon’s surface is exposed to a continuous flux of solar UV photons and fast ions, e.g. galactic cosmic rays (GCRs), solar wind (SW), and solar energetic particles (SEPs), that modify the physical and chemical properties of surface materials, thus challenging the survival of organic compounds. With this in mind, the aim of this work is to estimate the lifetime of organic compounds on the Moon’s surface under processing by energetic particles. We performed laboratory experiments to measure the destruction cross section of selected organic compounds, namely methane (CH4), formamide (NH2CHO), and an organic refractory residue, under simulated Moon conditions. Volatile species were deposited at low temperature (17 - 18 K) and irradiated with energetic ions (200 keV) in an ultra-high vacuum chamber. The organic refractory residue was produced after warming up of a CO:CH4 ice mixture irradiated with 200 keV H+ at 18 K. All the samples were analyzed in situ by infrared transmission spectroscopy. We found that destruction cross sections are strongly affected (up to one order of magnitude) by the dilution of a given organic in an inert matrix. Among the selected samples, organic refractory residues are the most resistant to radiation. We estimated the lifetime of organic compounds on the surface of the Moon by calculating the dose rate due to GCRs and SEPs at the Moon’s orbit and by using the experimental cross section values. Taking into account impact gardening, we also estimated the fraction of surviving organic material as a function of depth. Our results are compatible with the detection of CH4 in the LCROSS eject plume originating from layers deeper than about 0.7 m at the Moon’s South Pole and with the identification of complex organic material in lunar samples collected by Apollo 17 mission.
  •  
9.
  • van Deursen, Vincent M., et al. (författare)
  • Co-morbidities in patients with heart failure: an analysis of the European Heart Failure Pilot Survey
  • 2014
  • Ingår i: European Journal of Heart Failure. - : Oxford University Press (OUP): Policy B. - 1388-9842 .- 1879-0844. ; 16:1, s. 103-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Co-morbidities frequently accompany heart failure (HF), contributing to increased morbidity and mortality, and an impairment of quality of life. We assessed the prevalence, determinants, regional variation, and prognostic implications of co-morbidities in patients with chronic HF in Europe. Methods and results A total of 3226 European outpatients with chronic HF were included in this analysis of the European Society of Cardiology (ESC) Heart Failure Pilot Survey. The following co-morbidities were considered: diabetes, hyper- and hypothyroidism, stroke, COPD, sleep apnoea, chronic kidney disease (CKD), and anaemia. Prognostic implications of co-morbidities were evaluated using population attributable risks (PARs), and patients were divided into geographic regions. Clinical endpoints were all-cause mortality and HF hospitalization. The majority of patients (74%) had a least one co-morbidity, the most prevalent being CKD (41%), anaemia (29%), and diabetes (29%). Co-morbidities were independently associated with higher age (P less than 0.001), higher NYHA functional class (P less than 0.001), ischaemic aetiology of HF (P less than 0.001), higher heart rate (P = 0.011), history of hypertension (P less than 0.001), and AF (P less than 0.001). Only diabetes, CKD, and anaemia were independently associated with a higher risk of mortality and/or HF hospitalization. There were marked regional differences in prevalence and prognostic implications of co-morbidities. Prognostic implications of co-morbidities (PARs) were: CKD = 41%, anaemia = 37%, diabetes = 14%, COPD = 10%, and less than10% for all other co-morbidities. Conclusion In this pilot survey, co-morbidities are prevalent in patients with chronic HF and are related to the severity of the disease. The presence of diabetes, CKD, and anaemia was independently related to increased mortality and HF hospitalization, with the highest PAR for CKD and anaemia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy