SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ushakova Galyna) "

Sökning: WFRF:(Ushakova Galyna)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marungruang, Nittaya, et al. (författare)
  • Lingonberries and their two separated fractions differently alter the gut microbiota, improve metabolic functions, reduce gut inflammatory properties, and improve brain function in ApoE−/− mice fed high-fat diet
  • 2020
  • Ingår i: Nutritional Neuroscience. - 1028-415X. ; 23:8, s. 600-612
  • Tidskriftsartikel (refereegranskat)abstract
    • Lingonberries (LB) have been shown to have beneficial metabolic effects, which is associated with an altered gut microbiota. This study investigated whether the LB-induced improvements were associated with altered gut- and neuroinflammatory markers, as well as cognitive performance in ApoE−/− mice fed high-fat (HF) diets. Whole LB, as well as two separated fractions of LB were investigated. Eight-week-old male ApoE−/− mice were fed HF diets (38% kcal) containing whole LB (wLB), or the insoluble (insLB) and soluble fractions (solLB) of LB for 8 weeks. Inclusion of wLB and insLB fraction reduced weight gain, reduced fat deposition and improved glucose response. Both wLB and insLB fraction also changed the caecal microbiota composition and reduced intestinal S100B protein levels. The solLB fraction mainly induced weight loss in the mice. There were no significant changes in spatial memory, but significant increases in synaptic density in the hippocampus were observed in the brain of mice-fed wLB and insLB. Thus, this study shows that all lingonberry fractions counteracted negative effects of HF feedings on metabolic parameters. Also, wLB and insLB fraction showed to potentially improve brain function in the mice.
  •  
2.
  • Shepilov, Dmytro, et al. (författare)
  • Varying Dietary Component Ratios and Lingonberry Supplementation May Affect the Hippocampal Structure of ApoE–/– Mice
  • 2022
  • Ingår i: Frontiers in Nutrition. - : Frontiers Media SA. - 2296-861X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: This study aimed to investigate and compare the morphological and biochemical characteristics of the hippocampus and the spatial memory of young adult ApoE–/– mice on a standard chow diet, a low-fat diet (LFD), a high-fat diet (HFD), and an HFD supplemented with lingonberries. Methods: Eight-week-old ApoE–/– males were divided into five groups fed standard chow (Control), an LFD (LF), an HFD (HF), and an HFD supplemented with whole lingonberries (HF+WhLB) or the insoluble fraction of lingonberries (HF+InsLB) for 8 weeks. The hippocampal cellular structure was evaluated using light microscopy and immunohistochemistry; biochemical analysis and T-maze test were also performed. Structural synaptic plasticity was assessed using electron microscopy. Results: ApoE–/– mice fed an LFD expressed a reduction in the number of intact CA1 pyramidal neurons compared with HF+InsLB animals and the 1.6–3.8-fold higher density of hyperchromic (damaged) hippocampal neurons relative to other groups. The LF group had also morphological and biochemical indications of astrogliosis. Meanwhile, both LFD- and HFD-fed mice demonstrated moderate microglial activation and a decline in synaptic density. The consumption of lingonberry supplements significantly reduced the microglia cell area, elevated the total number of synapses and multiple synapses, and increased postsynaptic density length in the hippocampus of ApoE–/– mice, as compared to an LFD and an HFD without lingonberries. Conclusion: Our results suggest that, in contrast to the inclusion of fats in a diet, increased starch amount (an LFD) and reduction of dietary fiber (an LFD/HFD) might be unfavorable for the hippocampal structure of young adult (16-week-old) male ApoE–/– mice. Lingonberries and their insoluble fraction seem to provide a neuroprotective effect on altered synaptic plasticity in ApoE–/– animals. Observed morphological changes in the hippocampus did not result in notable spatial memory decline.
  •  
3.
  • Goncharova, Katerina, et al. (författare)
  • A piglet with surgically induced exocrine pancreatic insufficiency as an animal model of newborns to study fat digestion.
  • 2014
  • Ingår i: British Journal of Nutrition. - 1475-2662. ; 112:12, s. 2060-2067
  • Tidskriftsartikel (refereegranskat)abstract
    • The maldigestion and malabsorption of fat in infants fed milk formula results due to the minimal production of pancreatic lipase. Thus, to investigate lipid digestion and absorption and mimic the situation in newborns, a young porcine exocrine pancreatic insufficient (EPI) model was adapted and validated in the present study. A total of thirteen EPI pigs, aged 8 weeks old, were randomised into three groups and fed either a milk-based formula or a milk-based formula supplemented with either bacterial or fungal lipase. Digestion and absorption of fat was directly correlated with the addition of lipases as demonstrated by a 30 % increase in the coefficient of fat absorption. In comparison to the control group, a 40 and 25 % reduction in total fat content and 26 and 45 % reduction in n-3 and n-6 fatty acid (FA) content in the stool was observed for lipases 1 and 2, respectively. Improved fat absorption was reflected in the blood levels of lipid parameters. During the experiment, only a very slight gain in body weight was observed in EPI piglets, which can be explained by the absence of pancreatic protease and amylase in the gastrointestinal tract. This is similar to newborn babies that have reduced physiological function of exocrine pancreas. In conclusion, we postulate that the EPI pig model fed with infant formula mimics the growth and lipid digestion and absorption in human neonates and can be used to elucidate further importance of fat and FA in the development and growth of newborns, as well as for testing novel formula compositions.
  •  
4.
  • Goncharova, Kateryna, et al. (författare)
  • Enhanced absorption of long-chain polyunsaturated fatty acids following consumption of functional milk formula, pre-digested with immobilized lipase ex vivo, in an exocrine pancreatic insufficient (EPI) pig model
  • 2017
  • Ingår i: Journal of Functional Foods. - : Elsevier BV. - 1756-4646. ; 34, s. 422-430
  • Tidskriftsartikel (refereegranskat)abstract
    • An exocrine pancreatic insufficient (EPI) pig model was used in the study. The effects of milk formula pre-digestion with immobilized microbial lipase, on the absorption and tissue accretion of long chain polyunsaturated fatty acids (LCPUFA) were assessed. Thirteen male EPI pigs, 10 weeks of age, were used in the study. Six healthy pigs, 6 weeks of age, were used as controls. The pigs were fed either a regular or a pre-digested milk formula. The formula pre-digestion resulted in the decreased faecal total fat and LCPUFA excretion (by 43% and 38% respectively), increased plasma and tissue LCPUFA content (up to 38%). In conclusion, we postulate that feeding a pre-digested milk formula, is an efficient method to develop a functional milk formula, the consumption of which will ensure an increase in total fat absorption (in particular LCPUFA) in human infants as was indicated in the present study in the EPI pig model.
  •  
5.
  • Muraviova, Diana, et al. (författare)
  • The impact of ademetionine and ipidacrine/phenibut on the NCAM distribution and behavior in the rat model of drug-induced liver injury
  • 2020
  • Ingår i: European Journal of Clinical and Experimental Medicine. - : University of Rzeszow. - 2544-2406 .- 2544-1361. ; 18:3, s. 155-164
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction. Recently, more attention is being paid to the drug-induced liver injury (DILI) as a consequence of the tuberculos is treatment and the need for new medicine is emphasized. The use of isoniazid and rifampicin has a potentiating effect, which increases the risk of substancial liver damage. In turn, systemic accumulation of toxic metabolites leads to negative changes in various organs, including the brain. It causes an imbalance in biochemical and neurophysiological processes in the brain, ultimately giving the onset to the development of hepatic encephalopathy. Aim. The effects of rifampicin and isoniazid on the central nervous system have not been studied before and we aimed to evaluate the impact these two substances have on the neuronal cell adhesion molecules (NCAM) distribution and animal behavior in the rat model of DILI. Material and methods. The 24 male Wistar rats, weighing 180-220 g were used for the experiment and divided to the groups (n=6): 1 – control; 2 – rats with experimental DILI; 3 – rats with DILI plus the intravenous infusion of S-adenosyl-L-methionine at a dose of 35 mg/kg; 4 – rats with DILI plus a fixed combination of ipidacrine hydrochloride at a dose 1 mg/kg body weight and phenibut at a dose 60 mg/kg body weight daily for the last 14 days of the experiment. All experimental procedures were carried out in the accordance with the principles outlined in the current Guide to the Care and Use of Experimental Animals. The locomotor and research activities were studied in the open field test. The activity of aspartate aminotransferase (AST, ЕС 2.6.1.1) and alanine aminotransferase (ALT, ЕС 2.6.1.2) in the serum of rats were tested to confirm the liver damage. The quantitative analyses of soluble and membrane forms of NCAM were performed with ELISA. The ANOVA followed by a Tukey post-hoc test was used to assess statistical differences between groups. Results. Our investigation in the open field test revealed a significant decrease in the locomotor and research activity of rats after 28 days of rifampicin and isoniazid administration. The recovery of investigated parameters was observed in groups of animals treated with ademetionine (AD group) or combination of ipidacrine and phenibut (IP/PB group). We also observed that changes in rats’ behavior were consistent with alterations of the NCAM levels in the thalamus and hippocampus. Thus, the level of membrane NCAM was significantly decreased under DILI in both investigated brain regions (thalamus and hippocampus), while both AD and IP/PB treatments restored membrane NCAM levels towards those observed in the control group at least in the hippocampus. Conclusion. Obtained data suggests that both ademetionine and combinated drug containing ipidacrine and phenibut possesses neuroprotective properties and could prevent the decline in synaptic plasticity under antitubercular therapy.
  •  
6.
  • Pierzynowski, Stefan G., et al. (författare)
  • Difference in Performance of EPI Pigs Fed Either Lipase-Predigested or Creon®-Supplemented Semielemental Diet
  • 2021
  • Ingår i: BioMed Research International. - : Hindawi Limited. - 2314-6133 .- 2314-6141. ; 2021
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic enzyme replacement therapy (PERT) and fat predigestion are key in ensuring the optimal growth of patients with cystic fibrosis. Our study attempted to highlight differences between fat predigestion and conventional PERT on body composition of young pigs with exocrine pancreatic insufficiency (EPI). EPI and healthy pigs were fed with high-fat diet for six weeks. During the last two weeks of the study, all pigs received additional nocturnal alimentation with Peptamen AF (PAF) and were divided into three groups: H - healthy pigs receiving PAF; P - EPI pigs receiving PAF+PERT; and L - EPI pigs receiving PAF predigested with an immobilized microbial lipase. Additional nocturnal alimentation increased the body weight gain of EPI pigs with better efficacy in P pigs. Humerus length and area in pigs in groups L and P were lower than that observed in pigs in group H (p value 0.005-0.088). However, bone mineral density and strength were significantly higher in P and L as compared to that of H pigs (p value 0.0026-0.0739). The gut structure was improved in P pigs. The levels of neurospecific proteins measured in the brain were mainly affected in P and less in L pigs as compared to H pigs. The beneficial effects of the nocturnal feeding with the semielemental diet in the prevention of EPI pigs' growth/development retardation are differently modified by PERT or fat predigestion in terms of growth, bone properties, neurospecific protein distribution, and gut structure.
  •  
7.
  • Pierzynowski, Stefan, et al. (författare)
  • Impact of colostrum and plasma immunoglobulin intake on hippocampus structure during early postnatal development in pigs.
  • 2014
  • Ingår i: International Journal of Developmental Neuroscience. - : Wiley. - 1873-474X .- 0736-5748. ; 35, s. 64-71
  • Tidskriftsartikel (refereegranskat)abstract
    • The first milk, colostrum, is an important source of nutrients and an exclusive source of immunoglobulins (Ig), essential for the growth and protection from infection of newborn pigs. Colostrum intake has also been shown to affect the vitality and behaviour of neonatal pigs. The objective of this study was to evaluate the effects of feeding colostrum and plasma immunoglobulin on brain development in neonatal pigs. Positive correlations were found between growth, levels of total protein and IgG in blood plasma and hippocampus development in sow-reared piglets during the first 3 postnatal days. In piglets fed an elemental diet (ED) for 24h, a reduced body weight, a lower plasma protein level and a decreased level of astrocyte specific protein in the hippocampus was observed, as compared to those that were sow-reared. The latter was coincident with a reduced microgliogenesis and an essentially diminished number of neurons in the CA1 area of the hippocampus after 72h. Supplementation of the ED with purified plasma Ig, improved the gliogenesis and supported the trophic and immune status of the hippocampus. The data obtained indicate that the development of the hippocampus structure is improved by colostrum or an Ig-supplemented elemental diet in order to stimulate brain protein synthesis and its development during the early postnatal period.
  •  
8.
  • Ushakova, Galyna, et al. (författare)
  • The effect of long-term lactobacilli (lactic acid bacteria) enteral treatment on the central nervous system of growing rats
  • 2009
  • Ingår i: Journal of Nutritional Biochemistry. - : Elsevier BV. - 1873-4847 .- 0955-2863. ; 20:9, s. 677-684
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to explore the relationship between Consumption of large doses of lactic acid bacteria (LAB) and the behaviour and brain morphobiochemistry of normal growing rats. Four groups of rats were treated with LAB Cultures twice daily for 6 months. The control group received 1 ml of saline per treatment, while two experimental groups received I nil of living bacteria (Lactobacillus plantarum and Lactobacillus fermentum, respectively) and the remaining group received a heat-treated (inactivated) L. fermentum culture. After 2 and 6 months of treatment, respectively, eight animals from each group were sacrificed, and specimens were taken for further analyses. The behaviour of the rats was evaluated five times in an open-field test at monthly intervals throughout the study. Lactobacilli treatment for 2 months induced changes in the motoric behaviour of the rats. The concentration of the astrocytesoluble and filament glial fibrillary acidic protein (GFAP) decreased in the posterior part of the hemispheres, including the thalamus, hippocampus and cortex of the rats treated with L.fermentum. A greater decrease in filament GFAP (up to 50%) was shown in the group receiving the live from of L. fermentum. In contrast, the GFAP in the live L. plantarum-treated group increased, showing elevated levels of the Soluble and filament forms of GFAP in the posterior part of the hemispheres. A 60-66% decrease in the amount of the astrocyte-specific Ca-binding protein S-100b was shown in the posterior parts of the hemispheres and in the hindbrain of rats given LAB for 2 months. Prolonged feeding with LAB for 4 months up to full adulthood led to a further decrease in astrocytc reaction, reflected as all additional decrease in the amount Of Soluble GEAP and locomotor activity in all experimental groups. The changes in filament GFAP and S-100b appeared to disappear after prolonged feeding (total of 6 months) with LAB. In summary, LAB dietary treatment affected the ontogenetic development of the astrocytes, with the highest intensity observed in the early stages of rat development. It can be postulated that LAB treatment may play a preventive role in neurological diseases by decreasing astrocyte reaction and, consequently, lowering locomotor activity. (C) 2009 Elsevier Inc. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy