SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uzu Gaelle) "

Sökning: WFRF:(Uzu Gaelle)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mardonez, Valeria, et al. (författare)
  • Source apportionment study on particulate air pollution in two high-altitude Bolivian cities : La Paz and El Alto
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:18, s. 10325-10347
  • Tidskriftsartikel (refereegranskat)abstract
    • La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. Located between 3200 and 4050 m a.s.l. (above sea level), these cities are home to a burgeoning population of approximately 1.8 million residents. The air quality in this conurbation is heavily influenced by urbanization; however, there are no comprehensive studies evaluating the sources of air pollution and their health impacts. Despite their proximity, the substantial variation in altitude, topography, and socioeconomic activities between La Paz and El Alto result in distinct sources, dynamics, and transport of particulate matter (PM). In this investigation, PM10 samples were collected at two urban background stations located in La Paz and El Alto between April 2016 and June 2017. The samples were later analyzed for a wide range of chemical species including numerous source tracers (OC, EC, water-soluble ions, sugar anhydrides, sugar alcohols, trace metals, and molecular organic species). The United States Environmental Protection Agency (U.S. EPA) Positive Matrix Factorization (PMF v.5.0) receptor model was employed for the source apportionment of PM10. This is one of the first source apportionment studies in South America that incorporates an extensive suite of organic markers, including levoglucosan, polycyclic aromatic hydrocarbons (PAHs), hopanes, and alkanes, alongside inorganic species. The multisite PMF resolved 11 main sources of PM. The largest annual contribution to PM10 came from the following two major sources: the ensemble of the four vehicular emissions sources (exhaust and non-exhaust), accountable for 35 % and 25 % of the measured PM in La Paz and El Alto, respectively; and dust, which contributed 20 % and 32 % to the total PM mass. Secondary aerosols accounted for 22 % (24 %) in La Paz (El Alto). Agricultural smoke resulting from biomass burning in the Bolivian lowlands and neighboring countries contributed to 9 % (8 %) of the total PM10 mass annually, increasing to 17 % (13 %) between August-October. Primary biogenic emissions were responsible for 13 % (7 %) of the measured PM10 mass. Additionally, a profile associated with open waste burning occurring from May to August was identified. Although this source contributed only to 2 % (5 %) of the total PM10 mass, it constitutes the second largest source of PAHs, which are compounds potentially hazardous to human health. Our analysis additionally resolved two different traffic-related factors, a lubricant source (not frequently identified), and a non-exhaust emissions source. Overall, this study demonstrates that PM10 concentrations in La Paz and El Alto region are predominantly influenced by a limited number of local sources. In conclusion, to improve air quality in both cities, efforts should primarily focus on addressing dust, traffic emissions, open waste burning, and biomass burning.
  •  
2.
  • Moreno, C. Isabel, et al. (författare)
  • Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes
  • 2024
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 24:5, s. 2837-2860
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical composition of PM10 and non-overlapping PM2.5 was studied at the summit of Mt. Chacaltaya (5380 m a.s.l., lat. −16.346950°, long. −68.128250°) providing a unique long-term record spanning from December 2011 to March 2020. The chemical composition of aerosol at the Chacaltaya Global Atmosphere Watch (GAW) site is representative of the regional background, seasonally affected by biomass burning practices and by nearby anthropogenic emissions from the metropolitan area of La Paz–El Alto. Concentration levels are clearly influenced by seasons with minima occurring during the wet season (December to March) and maxima occurring during the dry and transition seasons (April to November). Ions, total carbon (EC + OC), and saccharide interquartile ranges for concentrations are 558–1785, 384–1120, and 4.3–25.5 ng m−3 for bulk PM10 and 917–2308, 519–1175, and 3.9–24.1 ng m−3 for PM2.5, respectively, with most of the aerosol seemingly present in the PM2.5 fraction. Such concentrations are overall lower compared to other high-altitude stations around the globe but higher than Amazonian remote sites (except for OC). For PM10, there is dominance of insoluble mineral matter (33 %–56 % of the mass), organic matter (7 %–34 %), and secondary inorganic aerosol (15 %–26 %). Chemical composition profiles were identified for different origins: glucose, and for the nearby urban and rural areas; OC, EC, , K+, acetate, formate, levoglucosan, and some F− and Br− for biomass burning; for aged marine emissions from the Pacific Ocean; arabitol, mannitol, and glucose for biogenic emissions; for soil dust; and and some Cl− for volcanism. Regional biomass burning practices influence the soluble fraction of the aerosol between June and November. The organic fraction is present all year round and has both anthropogenic (biomass burning and other combustion sources) and natural (primary and secondary biogenic emissions) origins, with the OC/EC mass ratio being practically constant all year round (10.5 ± 5.7, IQR 8.1–13.3). Peruvian volcanism has dominated the concentration since 2014, though it presents strong temporal variability due to the intermittence of the sources and seasonal changes in the transport patterns. These measurements represent some of the first long-term observations of aerosol chemical composition at a continental high-altitude site in the tropical Southern Hemisphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy