SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Valiev Damir) "

Sökning: WFRF:(Valiev Damir)

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abidakun, Olatunde, et al. (författare)
  • Impacts of fuel nonequidiffusivity on premixed flame propagation in channels with open ends
  • 2021
  • Ingår i: Physics of fluids. - : American Institute of Physics (AIP). - 1070-6631 .- 1089-7666. ; 33
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study scrutinizes premixed flame dynamics in micro-channels, thereby shedding light on advanced miniature micro-combustion technologies. While equidiffusive burning (when the Lewis number Le = 1) is a conventional approach adopted in numerous theoretical studies, real premixed flames are typically non-equidiffusive (Le ≠ 1), which leads to intriguing effects, such as diffusional-thermal instability. An equidiffusive computational study [V. Akkerman et al., Combust. Flame 145, 675–687 (2006)] reported regular oscillations of premixed flames spreading in channels having nonslip walls and open extremes. Here, this investigation is extended to nonequidiffusive combustion in order to systematically study the impact of the Lewis number on the flame in this geometry. The analysis is performed by means of computational simulations of the reacting flow equations with fully-compressible hydrodynamics and onestep Arrhenius chemical kinetics in channels with adiabatic and isothermal walls. In the adiabatic channels, which are the main case of study, it is found that the flames oscillate at low Lewis numbers, with the oscillation frequency decreasing with Le, while for the Le > 1 flames, a tendency to steady flame propagation is observed. The oscillation parameters also depend on the thermal expansion ratio and the channel width, although the impacts are rather quantitative than qualitative. The analysis is subsequently extended to the isothermal channels. It is shown that the role of heat losses to the walls is important and may potentially dominate over that of the Lewis number. At the same time, the impact of Le on burning in the isothermal channels is qualitatively weaker than that in the adiabatic channels.
  •  
2.
  • Adebiyi, Abdulafeez, et al. (författare)
  • Computational simulations of nonequidiffusive premixed flames in obstructed pipes
  • 2018
  • Konferensbidrag (refereegranskat)abstract
    • The impact of the Lewis number, Le, on the dynamics and morphology of a premixed flame front, spreading through a toothbrush-like array of obstacles in a semi-open channel, is studied by means of the computational simulations of the reacting flow equations with fully-compressible hydrodynamics and Arrhenius chemical kinetics. The computational approach employs a cell-centered, finite-volume numerical scheme, which is of the 2nd-order accuracy in time, 4th-order in space for the convective terms, and of the 2nd-order in space for the diffusive terms. The channels of blockage ratios 0.33∼0.67 are considered, with the Lewis numbers in the range 0.2≤Le≤2.0 employed. It is shown that the Lewis number influences the flame evolution substantially. Specifically, flame acceleration weakens for Le>1 (inherent to fuel-lean hydrogen or fuel-rich hydrocarbon burning), presumably, due to a thickening of the flame front. In contrast, Le<1 flames (such as that of rich hydrogen or lean hydrocarbon) acquire an extra strong folding of the front and thereby accelerate even much faster. The later effect can be devoted to the onset of the diffusional-Thermal combustion instability. © 2018 Eastern States Section of the Combustion Institute. All rights reserved.
  •  
3.
  • Adebiyi, Abdulafeez, et al. (författare)
  • Effect of surface friction on ultrafast flame acceleration in obstructed cylindrical pipes
  • 2019
  • Ingår i: AIP Advances. - : American Institute of Physics (AIP). - 2158-3226. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The Bychkov model of ultrafast flame acceleration in obstructed tubes [Valiev et al., "Flame Acceleration in Channels with Obstacles in the Deflagration-to-Detonation Transition," Combust. Flame 157, 1012 (2010)] employed a number of simplifying assumptions, including those of free-slip and adiabatic surfaces of the obstacles and of the tube wall. In the present work, the influence of free-slip/non-slip surface conditions on the flame dynamics in a cylindrical tube of radius R, involving an array of parallel, tightly-spaced obstacles of size αR, is scrutinized by means of the computational simulations of the axisymmetric fully-compressible gasdynamics and combustion equations with an Arrhenius chemical kinetics. Specifically, non-slip and free-slip surfaces are compared for the blockage ratio, α, and the spacing between the obstacles, ΔZ, in the ranges 1/3 ≤ α ≤ 2/3 and 0.25 ≤ ΔZ/R ≤ 2.0, respectively. For these parameters, an impact of surface friction on flameacceleration is shown to be minor, only 1-4%, slightly facilitating acceleration in a tube with ΔZ/R = 0.5 and moderating acceleration in thecase of ΔZ/R = 0.25. Given the fact that the physical boundary conditions are non-slip as far as the continuum assumption is valid, the presentwork thereby justifies the Bychkov model, employing the free-slip conditions, and makes its wider applicable to the practical reality. Whilethis result can be anticipated and explained by a fact that flame propagation is mainly driven by its spreading in the unobstructed portion ofan obstructed tube (i.e. far from the tube wall), the situation is, however, qualitatively different from that in the unobstructed tubes, wheresurface friction modifies the flame dynamics conceptually.
  •  
4.
  • Akkerman, Vyacheslav, et al. (författare)
  • Effect of gas compression on flame acceleration in obstructed cylindrical tubes
  • 2016
  • Ingår i: Spring Technical Meeting of the Eastern States Section of the Combustion Institute 2016. - : Combustion Institute; Curran Associates, Inc.. - 9781510822566
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The role of gas compression on the process of extremely fast flame acceleration in obstructed cylindrical tubes is studied analytically and validated by computational simulations. The acceleration leading to a deflagration-to-detonation transition is associated with a powerful jet-flow produced by delayed combustion in spaces between the obstacles. This acceleration mechanism is Reynolds-independent and conceptually laminar, with turbulence playing only a supplementary role. In this particular work, the incompressible formulation [Combust. Flame 157 (2010) 1012], Ref. 15 is extended to account for small but finite initial Mach number up to the first-order terms. While flames accelerate exponentially during the initial stage of propagation, when the compressibility is negligible, with continuous increase in the flame velocity with respect to the tube wall, the flame-generated compression waves subsequently moderate the acceleration process by affecting the flame shape and velocity, as well as the flow driven by the flame. It is demonstrated that the moderation effect is substantial, and as soon as gas compression is relatively small, the present theory is in good quantitative agreement with the computational simulations. The limitations of the incompressible theory are thereby underlined, and a critical blockage ratio for with this acceleration mechanism can be evaluated.
  •  
5.
  • Akkerman, Vyacheslav, et al. (författare)
  • Impacts of the Lewis and Markstein numbers effects on the flame acceleration in channels
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The effects of flame stretch and thermal/molecular diffusion on the flame acceleration in channels are quantified by means of the analytical and computational endeavours. The internal transport flame properties are accounted in the theory by means of the Markstein number, Mk. Being a positive or negative function of the thermal-chemical combustion parameters, such as the thermal expansion ratio and the Lewis and Zeldovich numbers, the Markstein number either moderates or promotes the flame acceleration. While Mk may provide a substantial impact on the flame acceleration rate in narrow channels, this effects diminishes with the increase of the channel width. The analysis is accompanied by extensive computational simulations of the Navier-Stokes combustion equations, which clarify the impact of the Lewis number on the flame acceleration. It is obtained that, for Le below a certain critical value, at the initial stage of flame acceleration, a globally-convex flame front is splits into two or more "fingers", accompanied by a drastic increase in the flame surface area and associated enhancement of the flame acceleration. Overall, the thermal-diffusive effects substantially facilitate the flame acceleration scenario, thereby advancing a potential deflagration-to-detonation transition. 
  •  
6.
  • Akkerman, V'yacheslav, et al. (författare)
  • Fast flame acceleration and deflagration-to-detonation transition in smooth and obstructed tubes, channels and slits
  • 2013
  • Ingår i: 8th US National Combustion Meeting 2013. - : Western States Section/Combustion Institute. - 9781627488426 ; , s. 970-978
  • Konferensbidrag (refereegranskat)abstract
    • This work is devoted to the comprehensive analytical, computational and experimental investigation of various stages of flame acceleration in narrow chambers. We consider mesoscale two-dimensional channels and cylindrical tubes, smooth and obstructed, and sub-millimeter gaps between two parallel plates. The evolution of the flame shape, propagation speed, acceleration rate, and velocity profiles nearby the flamefront are determined for each configuration, with the theories substantiated by the numerical simulations of the hydrodynamics and combustion equations with an Arrhenius reaction, and by the experiments on premixed hydrogen-oxygen and ethylene-oxygen flames. The detailed analyses demonstrate three different mechanisms of flame acceleration: 1) At the early stages of burning at the closed tube end, the flamefront acquires a finger-shape and demonstrates strong acceleration during a short time interval. While this precursor acceleration mechanism is terminated as soon as the flamefornt touches the side wall of the tube, having a little relation to the deflagration-to-detonation transition (DDT) for relatively slow, hydrocarbon flames; for fast (e.g. hydrogen-oxygen) flames, even a short finger-flame acceleration may amplify the flame propagation speed up to sonic values, with an important effect on the subsequent DDT process. 2) On the other hand, the classical mechanism of flame acceleration due to wall friction in smooth tubes is basically unlimited in time, but it depends noticeably on the tube width such that the acceleration rate decreases strongly with the Reynolds number. The entire DDT scenario includes four distinctive stages: (i) initial exponential acceleration at the quasi-incompressible state; (ii) moderation of the process because of gas compression; (iii) eventual saturation to a quasisteady, high-speed flames correlated with the Chapman-Jouguet deflagration; (iv) finally, the heating of the fuel mixture leads to the explosion ahead of the flame front, which develops into a self-supporting detonation. 3) In addition, we have revealed a physical mechanism of extremely fast flame acceleration in channels/tubes with obstacles. Combining the "benefits" of 1) and 2), this new mechanism is based on delayed burning between the obstacles, creating a powerful jet-flow and thereby driving the acceleration, which is extremely strong and independent of the Reynolds number, so the effect can be fruitfully utilized at industrial scales. Understanding of this mechanism provides the guide for optimization of the obstacle shape, while this task required tantalizing cut-and-try methods previously. On the other hand, our formulation opens new technological possibilities of DDT in micro-combustion.
  •  
7.
  • Alkhabbaz, Mohammed, et al. (författare)
  • Impact of the Lewis number on finger flame acceleration at the early stage of burning in channels and tubes
  • 2019
  • Ingår i: Physics of fluids. - : American Institute of Physics (AIP). - 1070-6631 .- 1089-7666. ; 31:8
  • Tidskriftsartikel (refereegranskat)abstract
    • For premixed combustion in channels and tubes with one end open, when a flame is ignited at the centerline at the closed end of the pipe and it propagates toward the open one, significant flame acceleration occurs at an early stage of the combustion process due to formation of a finger-shaped flame front. This scenario is tagged "finger flame acceleration" (FFA), involving an initially hemispherical flame kernel, which subsequently acquires a finger shape with increasing surface area of the flame front. Previous analytical and computational studies of FFA employed a conventional assumption of equidiffusivity when the thermal-to-mass-diffusivity ratio (the Lewis number) is unity (Le = 1). However, combustion is oftentimes nonequidiffusive (Le ≠ 1) in practice such that there has been a need to identify the role of Le in FFA. This demand is addressed in the present work. Specifically, the dynamics and morphology of the Le ≠ 1 flames in two-dimensional (2D) channels and cylindrical tubes are scrutinized by means of the computational simulations of the fully compressible reacting flow equations, and the role of Le is identified. Specifically, the Le > 1 flames accelerate slower as compared with the equidiffusive ones. In contrast, the Le < 1 flames acquire stronger distortion of the front, experience the diffusional-thermal combustion instability, and thereby accelerate much faster than the Le = 1 flames. In addition, combustion in a cylindrical configuration shows stronger FFA than that under the same burning conditions in a 2D planar geometry.
  •  
8.
  • Bychkov, Vitaly, et al. (författare)
  • Gas compression moderates flame acceleration in deflagration-to-detonation transition
  • 2012
  • Ingår i: Combustion Science and Technology. - : Informa UK Limited. - 0010-2202 .- 1563-521X. ; 184:7-8, s. 1066-1079
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of gas compression at the developed stages of flame acceleration in smooth-wall and obstructed channels is studied. We demonstrate analytically that gas compression moderates the acceleration rate, and we perform numerical simulations within the problem of flame transition to detonation. It is shown that flame acceleration undergoes three distinctive stages: (1) initial exponential acceleration in the incompressible regime, (2) moderation of the acceleration process due to gas compression, so that the exponential acceleration state goes over to a much slower one, (3) eventual saturation to a steady (or statistically steady) high-speed deflagration velocity, which may be correlated with the Chapman-Jouguet deflagration speed. The possibility of deflagration-to-detonation transition is demonstrated.
  •  
9.
  •  
10.
  • Bychkov, Vitaly, et al. (författare)
  • Physical Mechanism of Ultrafast Flame Acceleration
  • 2008
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 101:16, s. 164501-1-164501-4
  • Tidskriftsartikel (refereegranskat)abstract
    • We explain the physical mechanism of ultrafast flame acceleration in obstructed channels used in modern experiments on detonation triggering. It is demonstrated that delayed burning between the obstacles creates a powerful jetflow, driving the acceleration. This mechanism is much stronger than the classical Shelkin scenario of flame acceleration due to nonslip at the channel walls. The mechanism under study is independent of the Reynolds number, with turbulence playing only a supplementary role. The flame front accelerates exponentially; the analytical formula for the growth rate is obtained. The theory is validated by extensive direct numerical simulations and comparison to previous experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52
Typ av publikation
tidskriftsartikel (32)
konferensbidrag (18)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (45)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Valiev, Damir (46)
Akkerman, V’yachesla ... (22)
Bychkov, Vitaly (13)
Law, Chung K. (11)
Bychkov, Vitaly, 196 ... (8)
Eriksson, Lars-Erik, ... (7)
visa fler...
Demirgok, Berk (5)
Schmidt, Florian M. (4)
Marklund, Mattias, 1 ... (4)
Demir, Sinan (4)
Modestov, Mikhail (4)
Khodabakhsh, Amir (3)
Qu, Zhechao (3)
Adebiyi, Abdulafeez (3)
Akkerman, V. (3)
Liberman, M.A. (3)
Eriksson, L-E (3)
Ugarte, Orlando (3)
Valiev, Damir M. (3)
Foltynowicz, Aleksan ... (2)
Abidakun, Olatunde (2)
Edman, Ludvig, 1967- (2)
Lötstedt, Per (2)
Law, C. K. (2)
Wu, Ming-Hsun (2)
Brodin, Gert, 1963- (2)
Tennyson, Jonathan (2)
Peil, O. E. (2)
Dion, Claude (2)
Matyba, Piotr, 1982- (2)
Huang, Kai (2)
Liberman, Michael A. (2)
Johansson, Börje (1)
Muller, B (1)
Idowu, Gbolahan (1)
Alkandari, Rawan (1)
Bilgili, Serdar (1)
Morella, Haley (1)
Kuznetsov, Mikhail (1)
Sadek, Jad (1)
Alkhabbaz, Mohammed (1)
Johansson, Börje, Pr ... (1)
Marklund, Mattias (1)
Foltynowicz, Aleksan ... (1)
Schmidt, Florian (1)
Kuznetsov, M. (1)
Steinvall, Erik (1)
Almeyda, Orlando Jes ... (1)
Zhang, Kun (1)
Dion, Claude, 1970- (1)
visa färre...
Lärosäte
Umeå universitet (45)
Kungliga Tekniska Högskolan (9)
Chalmers tekniska högskola (7)
Uppsala universitet (3)
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Teknik (35)
Naturvetenskap (34)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy