SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vallance S) "

Search: WFRF:(Vallance S)

  • Result 1-10 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Garg, D., et al. (author)
  • Fragmentation Dynamics of Fluorene Explored Using Ultrafast XUV-Vis Pump-Probe Spectroscopy
  • 2022
  • In: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 10
  • Journal article (peer-reviewed)abstract
    • We report on the use of extreme ultraviolet (XUV, 30.3 nm) radiation from the Free-electron LASer in Hamburg (FLASH) and visible (Vis, 405 nm) photons from an optical laser to investigate the relaxation and fragmentation dynamics of fluorene ions. The ultrashort laser pulses allow to resolve the molecular processes occurring on the femtosecond timescales. Fluorene is a prototypical small polycyclic aromatic hydrocarbon (PAH). Through their infrared emission signature, PAHs have been shown to be ubiquitous in the universe, and they are assumed to play an important role in the chemistry of the interstellar medium. Our experiments track the ionization and dissociative ionization products of fluorene through time-of-flight mass spectrometry and velocity-map imaging. Multiple processes involved in the formation of each of the fragment ions are disentangled through analysis of the ion images. The relaxation lifetimes of the excited fluorene monocation and dication obtained through the fragment formation channels are reported to be in the range of a few tens of femtoseconds to a few picoseconds.
  •  
9.
  • Lee, J. W.L., et al. (author)
  • Time-resolved relaxation and fragmentation of polycyclic aromatic hydrocarbons investigated in the ultrafast XUV-IR regime
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10-100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH*, PAH(+*) and PAH(2+*) states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH(2+) ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms. Polycyclic aromatic hydrocarbons play an important role in interstellar chemistry, where interaction with high energy photons can induce ionization and fragmentation reactions. Here the authors, with XUV-IR pump-probe experiments, investigate the ultrafast photoinduced dynamics of fluorene, phenanthrene and pyrene, providing insight into their preferred reaction channels.
  •  
10.
  • Kranendijk, Martijn, et al. (author)
  • IDH2 Mutations in Patients with D-2-Hydroxyglutaric Aciduria.
  • 2010
  • In: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 330:6002
  • Journal article (peer-reviewed)abstract
    • Heterozygous somatic mutations in the genes encoding isocitrate dehydrogenase- 1 and -2 (IDH1 and IDH2) were recently discovered in human neoplastic disorders. These mutations disable the enzymes' normal ability to convert isocitrate to 2-ketoglutarate (2-KG) and confer on the enzymes a new function: the ability to convert 2-KG to d-2-hydroxyglutarate (D-2-HG). We have detected heterozygous germline mutations in IDH2 that alter enzyme residue R140 in 15 unrelated patients with d-2-hydroxyglutaric aciduria (D-2-HGA), a rare neurometabolic disorder characterized by supraphysiological levels of D-2-HG. These findings provide additional impetus for investigating the role of D-2-HG in the pathophysiology of metabolic disease and cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view