SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vallières Xavier) "

Sökning: WFRF:(Vallières Xavier)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hajra, Rajkumar, et al. (författare)
  • Cometary plasma response to interplanetary corotating interaction regions during 2016 June-September : a quantitative study by the Rosetta Plasma Consortium
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 480:4, s. 4544-4556
  • Tidskriftsartikel (refereegranskat)abstract
    • Four interplanetary corotating interaction regions (CIRs) were identified during 2016 June-September by the Rosetta Plasma Consortium (RPC) monitoring in situ the plasma environment of the comet 67P/Churyumov-Gerasimenko (67P) at heliocentric distances of similar to 3-3.8 au. The CIRs, formed in the interface region between low- and high-speed solar wind streams with speeds of similar to 320-400 km s(-1) and similar to 580-640 km s(-1), respectively, are characterized by relative increases in solar wind proton density by factors of similar to 13-29, in proton temperature by similar to 7-29, and in magnetic field by similar to 1-4 with respect to the pre-CIR values. The CIR boundaries are well defined with interplanetary discontinuities. Out of 10 discontinuities, four are determined to be forward waves and five are reverse waves, propagating at similar to 5-92 per cent of the magnetosonic speed at angles of similar to 20 degrees-87 degrees relative to ambient magnetic field. Only one is identified to be a quasi-parallel forward shock with magnetosonic Mach number of similar to 1.48 and shock normal angle of similar to 41 degrees. The cometary ionosphere response was monitored by Rosetta from cometocentric distances of similar to 4-30 km. A quiet time plasma density map was developed by considering dependences on cometary latitude, longitude, and cometocentric distance of Rosetta observations before and after each of the CIR intervals. The CIRs lead to plasma density enhancements of similar to 500-1000 per cent with respect to the quiet time reference level. Ionospheric modelling shows that increased ionization rate due to enhanced ionizing (>12-200 eV) electron impact is the prime cause of the large cometary plasma density enhancements during the CIRs. Plausible origin mechanisms of the cometary ionizing electron enhancements are discussed.
  •  
2.
  • Hajra, Rajkumar, et al. (författare)
  • Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov-Gerasimenko
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 475:3, s. 4140-4147
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta orbiter witnessed several hundred diamagnetic cavity crossings (unmagnetized regions) around comet 67P/Churyumov-Gerasimenko during its two year survey of the comet. The characteristics of the plasma environment inside these diamagnetic regions are studied using in situ measurements by the Rosetta Plasma Consortium instruments. Although the unmagnetized plasma density has been observed to exhibit little dynamics compared to the very dynamical magnetized cometary plasma, we detected several localized dynamic plasma structures inside those diamagnetic regions. These plasma structures are not related to the direct ionization of local cometary neutrals. The structures are found to be steepened, asymmetric plasma enhancements with typical rising-to-descending slope ratio of similar to 2.8 (+/- 1.9), skewness similar to 0.43 (+/- 0.36), mean duration of similar to 2.7 (+/- 0.9) min and relative density variation Delta N/N of similar to 0.5 (+/- 0.2), observed close to the electron exobase. Similar steepened plasma density enhancements were detected at the magnetized boundaries of the diamagnetic cavity as well as outside the diamagnetic region. The plausible scalelength and propagation direction of the structures are estimated from simple plasma dynamics considerations. It is suggested that they are large-scale unmagnetized plasma enhancements, transmitted from the very dynamical outer magnetized region to the inner magnetic field-free cavity region.
  •  
3.
  • Odelstad, Elias, et al. (författare)
  • Ion Velocity and Electron Temperature Inside and Around the Diamagnetic Cavity of Comet 67P
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:7, s. 5870-5893
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract A major point of interest in cometary plasma physics has been the diamagnetic cavity, an unmagnetized region in the innermost part of the coma. Here we combine Langmuir and Mutual Impedance Probe measurements to investigate ion velocities and electron temperatures in the diamagnetic cavity of comet 67P, probed by the Rosetta spacecraft. We find ion velocities generally in the range 2?4 km/s, significantly above the expected neutral velocity 1 km/s, showing that the ions are (partially) decoupled from the neutrals, indicating that ion-neutral drag was not responsible for balancing the outside magnetic pressure. Observations of clear wake effects on one of the Langmuir probes showed that the ion flow was close to radial and supersonic, at least with respect to the perpendicular temperature, inside the cavity and possibly in the surrounding region as well. We observed spacecraft potentials  V throughout the cavity, showing that a population of warm (?5 eV) electrons was present throughout the parts of the cavity reached by Rosetta. Also, a population of cold ( ) electrons was consistently observed throughout the cavity, but less consistently in the surrounding region, suggesting that while Rosetta never entered a region of collisionally coupled electrons, such a region was possibly not far away during the cavity crossings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy