SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vallone Peter M.) "

Sökning: WFRF:(Vallone Peter M.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chaitanya, Lakshmi, et al. (författare)
  • Collaborative EDNAP exercise on the IrisPlex system for DNA based prediction of human eye colour
  • 2014
  • Ingår i: Forensic Science International. - : Elsevier. - 1872-4973 .- 1878-0326. ; 11, s. 241-251
  • Tidskriftsartikel (refereegranskat)abstract
    • The IrisPlex system is a DNA-based test system for the prediction of human eye colour from biological samples and consists of a single forensically validated multiplex genotyping assay together with a statistical prediction model that is based on genotypes and phenotypes from thousands of individuals. IrisPlex predicts blue and brown human eye colour with, on average, >94% precision accuracy using six of the currently most eye colour informative single nucleotide polymorphisms (HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, SLC45A2 (MATP) rs16891982, TYR rs1393350, and IRF4 rs12203592) according to a previous study, while the accuracy in predicting non-blue and non-brown eye colours is considerably lower. In an effort to vigorously assess the IrisPlex system at the international level, testing was performed by 21 laboratories in the context of a collaborative exercise divided into three tasks and organised by the European DNA Profiling (EDNAP) Group of the International Society of Forensic Genetics (ISFG). Task 1 involved the assessment of 10 blood and saliva samples provided on FTA cards by the organising laboratory together with eye colour phenotypes; 99.4% of the genotypes were correctly reported and 99% of the eye colour phenotypes were correctly predicted. Task 2 involved the assessment of 5 DNA samples extracted by the host laboratory from simulated casework samples, artificially degraded, and provided to the participants in varying DNA concentrations. For this task, 98.7% of the genotypes were correctly determined and 96.2% of eye colour phenotypes were correctly inferred. For Tasks 1 and 2 together, 99.2% (1875) of the 1890 genotypes were correctly generated and of the 15 (0.8%) incorrect genotype calls, only 2 (0.1%) resulted in incorrect eye colour phenotypes. The voluntary Task 3 involved participants choosing their own test subjects for IrisPlex genotyping and eye colour phenotype inference, while eye photographs were provided to the organising laboratory and judged; 96% of the eye colour phenotypes were inferred correctly across 100 samples and 19 laboratories. The high success rates in genotyping and eye colour phenotyping clearly demonstrate the reproducibility and the robustness of the IrisPlex assay as well as the accuracy of the IrisPlex model to predict blue and brown eye colour from DNA. Additionally, this study demonstrates the ease with which the IrisPlex system is implementable and applicable across forensic laboratories around the world with varying pre-existing experiences.
  •  
2.
  • Sidstedt, Maja, et al. (författare)
  • The impact of common PCR inhibitors on forensic MPS analysis
  • 2019
  • Ingår i: Forensic Science International: Genetics. - : Elsevier BV. - 1872-4973. ; 40, s. 182-191
  • Tidskriftsartikel (refereegranskat)abstract
    • Massively parallel sequencing holds great promise for new possibilities in the field of forensic genetics, enabling simultaneous analysis of multiple markers as well as offering enhanced short tandem repeat allele resolution. A challenge in forensic DNA analysis is that the samples often contain low amounts of DNA in a background that may interfere with downstream analysis. PCR inhibition mechanisms of some relevant molecules have been studied applying e.g. real-time PCR and digital PCR. However, a detailed understanding of the effects of inhibitory molecules on forensic MPS, including mechanisms and ways to relieve inhibition, is missing. In this study, the effects of two well-characterized PCR inhibitors, humic acid and hematin, have been studied using the ForenSeq DNA Signature Prep kit. Humic acid and hematin resulted in lowered read numbers as well as specific negative effects on certain markers. Quality control of libraries with Fragment analyzer showed that increasing amounts of inhibitors caused a lowered amplicon quantity and that the larger amplicons were more likely to drop out. Further, the inhibitor tolerance could be improved 5–10 times by addition of bovine serum albumin in the initial PCR. On the contrary to the samples with inhibitors, low-template samples resulted in lowered read numbers for all markers. This difference strengthened the conclusion that the inhibitors have a negative effect on the DNA polymerase activity in the initial PCR. Additionally, a common capillary gel electrophoresis-based STR kit was shown to handle at least 200 times more inhibitors than the ForenSeq DNA Signature Prep kit. This suggests that there is room for improvement of the PCR components to ensure analytical success for challenging samples, which is needed for a broad application of MPS for forensic STR analysis.
  •  
3.
  • Sidstedt, Maja, et al. (författare)
  • Ultrasensitive sequencing of STR markers utilizing unique molecular identifiers and the SiMSen-Seq method
  • 2024
  • Ingår i: Forensic Science International: Genetics. - : Elsevier Ireland Ltd. - 1872-4973 .- 1878-0326. ; 71
  • Tidskriftsartikel (refereegranskat)abstract
    • Massively parallel sequencing (MPS) is increasingly applied in forensic short tandem repeat (STR) analysis. The presence of stutter artefacts and other PCR or sequencing errors in the MPS-STR data partly limits the detection of low DNA amounts, e.g., in complex mixtures. Unique molecular identifiers (UMIs) have been applied in several scientific fields to reduce noise in sequencing. UMIs consist of a stretch of random nucleotides, a unique barcode for each starting DNA molecule, that is incorporated in the DNA template using either ligation or PCR. The barcode is used to generate consensus reads, thus removing errors. The SiMSen-Seq (Simple, multiplexed, PCR-based barcoding of DNA for sensitive mutation detection using sequencing) method relies on PCR-based introduction of UMIs and includes a sophisticated hairpin design to reduce unspecific primer binding as well as PCR protocol adjustments to further optimize the reaction. In this study, SiMSen-Seq is applied to develop a proof-of-concept seven STR multiplex for MPS library preparation and an associated bioinformatics pipeline. Additionally, machine learning (ML) models were evaluated to further improve UMI allele calling. Overall, the seven STR multiplex resulted in complete detection and concordant alleles for 47 single-source samples at 1 ng input DNA as well as for low-template samples at 62.5 pg input DNA. For twelve challenging mixtures with minor contributions of 10 pg to 150 pg and ratios of 1–15% relative to the major donor, 99.2% of the expected alleles were detected by applying the UMIs in combination with an ML filter. The main impact of UMIs was a substantially lowered number of artefacts as well as reduced stutter ratios, which were generally below 5% of the parental allele. In conclusion, UMI-based STR sequencing opens new means for improved analysis of challenging crime scene samples including complex mixtures.
  •  
4.
  • Sidstedt, Maja, et al. (författare)
  • Digital PCR inhibition mechanisms using standardized inhibitors representing soil and blood matrices
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Digital PCR (dPCR) enables absolute quantification of nucleic acids by partitioning the sample into hundreds or thousands of minute reactions. By assuming a Poisson distribution for the number of DNA fragments present in each chamber, the DNA concentrationis determined without the need for a standard curve. However, when analyzing nucleic acids from complex matrices such as soil and blood, the dPCR quantification can be biased due to the presence of inhibitory compounds. Here, we present how certain inhibitors disturb dPCR quantification and suggest solutions to these problems. Furthermore, we use real-time PCR, dPCR and isothermal titration calorimetry as tools to elucidate the mechanisms underlying the PCR inhibition. The impact of impurities on dPCR quantification was studied using humic acid as a model inhibitor. We show that the inhibitor-tolerance differs greatly for three different DNA polymerases, illustrating the importance of choosing a DNA polymerase-buffer system that is compatible with the samples to be analysed. Various inhibitory-substances from blood were found to disturb the system in different ways. For example, hemoglobin was found to cause quenching of fluorescence and a dramatic decrease of the number of positive reactions, leading to an underestimation of DNA quantity. IgG caused an increased number of late-starters. The system was more susceptible to inhibition by IgG when single-stranded DNA was used as template, compared with double-stranded DNA. By understanding more about the mechanisms of PCR inhibitors it will be possible to design more optimal PCR chemistries, improving dPCR detection and quantification.
  •  
5.
  • Sidstedt, Maja, et al. (författare)
  • Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR
  • 2018
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 410:10, s. 2569-2583
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood samples are widely used for PCR-based DNA analysis in fields such as diagnosis of infectious diseases, cancer diagnostics, and forensic genetics. In this study, the mechanisms behind blood-induced PCR inhibition were evaluated by use of whole blood as well as known PCR-inhibitory molecules in both digital PCR and real-time PCR. Also, electrophoretic mobility shift assay was applied to investigate interactions between inhibitory proteins and DNA, and isothermal titration calorimetry was used to directly measure effects on DNA polymerase activity. Whole blood caused a decrease in the number of positive digital PCR reactions, lowered amplification efficiency, and caused severe quenching of the fluorescence of the passive reference dye 6-carboxy-X-rhodamine as well as the double-stranded DNA binding dye EvaGreen. Immunoglobulin G was found to bind to single-stranded genomic DNA, leading to increased quantification cycle values. Hemoglobin affected the DNA polymerase activity and thus lowered the amplification efficiency. Hemoglobin and hematin were shown to be the molecules in blood responsible for the fluorescence quenching. In conclusion, hemoglobin and immunoglobulin G are the two major PCR inhibitors in blood, where the first affects amplification through a direct effect on the DNA polymerase activity and quenches the fluorescence of free dye molecules, and the latter binds to single-stranded genomic DNA, hindering DNA polymerization in the first few PCR cycles. [Figure not available: see fulltext.]
  •  
6.
  • Sidstedt, Maja, et al. (författare)
  • Accurate Digital Polymerase Chain Reaction Quantification of Challenging Samples Applying Inhibitor-Tolerant DNA Polymerases
  • 2017
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 89:3, s. 1642-1649
  • Tidskriftsartikel (refereegranskat)abstract
    • Digital PCR (dPCR) enables absolute quantification of nucleic acids by partitioning of the sample into hundreds or thousands of minute reactions. By assuming a Poisson distribution for the number of DNA fragments present in each chamber, the DNA concentration is determined without the need for a standard curve. However, when analyzing nucleic acids from complex matrixes such as soil and blood, the dPCR quantification can be biased due to the presence of inhibitory compounds. In this study, we evaluated the impact of varying the DNA polymerase in chamber-based dPCR for both pure and impure samples using the common PCR inhibitor humic acid (HA) as a model. We compared the TaqMan Universal PCR Master Mix with two alternative DNA polymerases: ExTaq HS and Immolase. By using Bayesian modeling, we show that there is no difference among the tested DNA polymerases in terms of accuracy of absolute quantification for pure template samples, i.e., without HA present. For samples containing HA, there were great differences in performance: the TaqMan Universal PCR Master Mix failed to correctly quantify DNA with more than 13 pg/nL HA, whereas Immolase (1 U) could handle up to 375 pg/nL HA. Furthermore, we found that BSA had a moderate positive effect for the TaqMan Universal PCR Master Mix, enabling accurate quantification for 25 pg/nL HA. Increasing the amount of DNA polymerase from 1 to S U had a strong effect for ExTaq HS, elevating HA-tolerance four times. We also show that the average Cq values of positive reactions may be used as a measure of inhibition effects, e.g., to determine whether or not a dPCR quantification result is reliable. The statistical models developed to objectively analyze the data may also be applied in quality control. We conclude that the choice of DNA polymerase in dPCR is crucial for the accuracy of quantification when analyzing challenging samples.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (5)
konferensbidrag (1)
Typ av innehåll
refereegranskat (5)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Hedman, Johannes (5)
Rådström, Peter (5)
Sidstedt, Maja (5)
Ansell, Ricky (3)
Kiesler, Kevin M. (3)
Tillmar, Andreas (2)
visa fler...
Johansson, Gustav (1)
Wadsö, Lars (1)
Norén, Lina (1)
Hedell, Ronny (1)
Ståhlberg, Anders (1)
Nilsson, Helena (1)
Parson, Walther (1)
Håkansson, Joakim (1)
Bogestål, Yalda (1)
Branicki, Wojciech (1)
Capal, Tomas (1)
Haas, Cordula (1)
Morling, Niels (1)
Sajantila, Antti (1)
Sijen, Titia (1)
Syndercombe-Court, D ... (1)
Kayser, Manfred (1)
Gynnå, Arvid H. (1)
Kupiec, Tomasz (1)
Jansson, Linda (1)
Chaitanya, Lakshmi (1)
Walsh, Susan (1)
Dyrberg Andersen, Je ... (1)
Ballantyne, Kaye (1)
Ballard, David (1)
Banemann, Regine (1)
Maria Bauer, Christi ... (1)
Margarida Bento, Ana (1)
Brisighelli, Frances ... (1)
Clarisse, Lindy (1)
Gross, Theresa E. (1)
Hoff-Olsen, Per (1)
Hollard, Clémence (1)
Keyser, Christine (1)
Kohler, Priscila (1)
Linacre, Adrian (1)
Minawi, Anglika (1)
Ottens, Renée (1)
Palo, Jukka U. (1)
Pascali, Vincenzo L. (1)
Philips, Chris (1)
João Porto, Maria (1)
Schneider, Peter M. (1)
Söchtig, Jens (1)
visa färre...
Lärosäte
Lunds universitet (4)
Linköpings universitet (3)
Göteborgs universitet (1)
Chalmers tekniska högskola (1)
RISE (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (3)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy