SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Valonen Piia) "

Sökning: WFRF:(Valonen Piia)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pulkkinen, Hertta, et al. (författare)
  • Recombinant human type II collagen as a material for cartilage tissue engineering.
  • 2008
  • Ingår i: International Journal of Artificial Organs. - : Wichtig Editore Srl. - 0391-3988 .- 1724-6040. ; 31:11, s. 960-969
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Collagen type II is the major component of cartilage and would be an optimal scaffold material for reconstruction of injured cartilage tissue. In this study, the feasibility of recombinant human type II collagen gel as a 3-dimensional culture system for bovine chondrocytes was evaluated in vitro.METHODS: Bovine chondrocytes (4x106 cells) were seeded within collagen gels and cultivated for up to 4 weeks. The gels were investigated with confocal microscopy, histology, and biochemical assays.RESULTS: Confocal microscopy revealed that the cells maintained their viability during the entire cultivation period. The chondrocytes were evenly distributed inside the gels, and the number of cells and the amount of the extracellular matrix increased during cultivation. The chondrocytes maintained their round phenotype during the 4-week cultivation period. The glycosaminoglycan levels of the tissue increased during the experiment. The relative levels of aggrecan and type II collagen mRNA measured with realtime polymerase chain reaction (PCR) showed an increase at 1 week.CONCLUSION: Our results imply that recombinant human type II collagen is a promising biomaterial for cartilage tissue engineering, allowing homogeneous distribution in the gel and biosynthesis of extracellular matrix components.
  •  
2.
  • Pulkkinen, Hertta, et al. (författare)
  • Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit
  • 2013
  • Ingår i: Osteoarthritis and Cartilage. - : Elsevier. - 1063-4584 .- 1522-9653. ; 21:3, s. 481-490
  • Tidskriftsartikel (refereegranskat)abstract
    • SummaryObjectiveRecombinant human type II collagen (rhCII) gels combined with autologous chondrocytes were tested as a scaffold for cartilage repair in rabbits in vivo.MethodAutologous chondrocytes were harvested, expanded and combined with rhCII-gel and further pre-cultivated for 2 weeks prior to transplantation into a 4 mm diameter lesion created into the rabbit's femoral trochlea (n = 8). Rabbits with similar untreated lesions (n = 7) served as a control group.ResultsSix months after the transplantation the repair tissue in both groups filled the lesion site, but in the rhCII-repair the filling was more complete. Both repair groups also had high proteoglycan and type II collagen contents, except in the fibrous superficial layer. However, the integration to the adjacent cartilage was incomplete. The O'Driscoll grading showed no significant differences between the rhCII-repair and spontaneous repair, both representing lower quality than intact cartilage. In the repair tissues the collagen fibers were abnormally organized and oriented. No dramatic changes were detected in the subchondral bone structure. The repair cartilage was mechanically softer than the intact tissue. Spontaneously repaired tissue showed lower values of equilibrium and dynamic modulus than the rhCII-repair. However, the differences in the mechanical properties between all three groups were insignificant.ConclusionWhen rhCII was used to repair cartilage defects, the repair quality was histologically incomplete, but still the rhCII-repairs showed moderate mechanical characteristics and a slight improvement over those in spontaneous repair. Therefore, further studies using rhCII for cartilage repair with emphasis on improving integration and surface protection are required.
  •  
3.
  • Pulliainen, Outi, et al. (författare)
  • Poly-L-D-lactic acid scaffold in the repair of porcine knee cartilage lesions.
  • 2007
  • Ingår i: Tissue engineering. - : Mary Ann Liebert Inc. - 1076-3279 .- 1557-8690. ; 13:6, s. 1347-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Articular cartilage injuries cause a major clinical problem because of the negligible repair capacity of cartilage. Autologous chondrocyte transplantation is a surgical method developed to repair cartilage lesions. In the operation, cartilage defect is covered with a periosteal patch and the suspension of cultured autologous chondrocytes is injected into the lesion site. The method can form good repair tissue, but new techniques are needed to make the operation easier and to increase the postoperative biomechanical properties of the repair tissue. In this study, we investigated poly-L,D-lactic acid (PLDLA) scaffolds alone or seeded with autologous chondrocytes in the repair of circular 6-mm cartilage lesions in immature porcine knee joints. Spontaneous repair was used as a reference. Histologic evaluation of the repair tissue showed that spontaneous repair exhibited higher scores than either PLDLA scaffold group (with or without seeded chondrocytes). The scaffold material was most often seen embedded in the subchondral bone underneath the defect area, probably because of the hardness of the PLDLA material. However, some of the cell-seeded and nonseeded scaffolds contained cartilaginous tissue, suggesting that invasion of mesenchymal cells inside nonseeded scaffolds had occurred. Hyaluronan deposited in the scaffold had possibly acted as a chemoattractant for the cell recruitment. In conclusion, the PLDLA scaffold material used in this study was obviously mechanically too hard to be used for cartilage repair in immature animals.
  •  
4.
  • Tiitu, Virpi, et al. (författare)
  • Bioreactor improves the growth and viability of chondrocytes in the knitted poly-L,D-lactide scaffold.
  • 2008
  • Ingår i: Biorheology. - : IOS Press. - 0006-355X .- 1878-5034. ; 45:3-4, s. 539-546
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study bovine chondrocytes were cultured in two different environments (static flasks and bioreactor) in knitted poly-L,D-lactide (PLDLA) scaffolds up to 4 weeks. Chondrocyte viability was assessed by employing cell viability fluorescence markers. The cells were visualized using confocal laser scanning microscopy and scanning electron microscopy. The mechanical properties and uronic acid contents of the scaffolds were tested. Our results showed that cultivation in a bioreactor improved the growth and viability of the chondrocytes in the PLDLA scaffolds. Cells were observed both on and in between the fibrils of scaffold. Furthermore, chondrocytes cultured in the bioreactor, regained their original round phenotypes, whereas those in the static flask culture were flattened in shape. Confocal microscopy revealed that chondrocytes from the bioreactor were attached on both sides of the scaffold and sustained viability better during the culture period. Uronic acid contents of the scaffolds, cultured in bioreactor, were significantly higher than in those cultured in static flasks for 4 weeks. In summary, our data suggests that the bioreactor is superior over the static flask culture when culturing chondrocytes in knitted PLDLA scaffold.
  •  
5.
  •  
6.
  • Virén, Tuomas, et al. (författare)
  • Quantitative evaluation of spontaneously and surgically repaired rabbit articular cartilage using intra-articular ultrasound method in situ.
  • 2010
  • Ingår i: Ultrasound in Medicine and Biology. - : Elsevier. - 1879-291X .- 0301-5629. ; 36:5, s. 833-839
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last decade, a major effort has been devoted to developing surgical methods for repairing localized articular cartilage lesions. Despite some promising results no ultimate breakthrough in surgical cartilage repair has been achieved. Improvements in repair techniques would benefit from more sensitive and quantitative methods for long-term follow-up of cartilage healing. In this study, the potential of a new ultrasound technique for detecting the compositional and structural changes in articular cartilage after surgery, using recombinant human type II collagen gel and spontaneous repair was, investigated. Rabbit knee joints containing intact (n = 13) and surgically (n = 8) or spontaneously (n = 5) repaired tissue were imaged in situ at 6 months after the operation using a clinical intravascular high-frequency (40 MHz) ultrasound device. Based on the ultrasound raw data, ultrasound reflection coefficient (R), integrated ultrasound reflection coefficient (IRC), apparent integrated backscattering coefficient (AIB) and ultrasound roughness index (URI) were determined for each sample. URI was significantly higher in both repair groups than in intact cartilage (p < 0.05). The reflection parameters (R and IRC) were significantly lower in surgically repaired cartilage (p < 0.05) than in intact cartilage. Furthermore, AIB was significantly higher in surgically repaired cartilage than in intact tissue (p < 0.05). To conclude, the integrity of the rabbit articular cartilage repair could be quantitatively evaluated with the nondestructive ultrasound approach. In addition, clinically valuable qualitative information on the changes in cartilage integration, structure and composition could be extracted from the ultrasound images. In the present study, the structure and properties of repaired tissue were inferior to native tissue at 6 months after the operation. The applied ultrasound device and probes are FDA approved and, thus, applicable for the quantitative in vivo evaluation of human articular cartilage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy